MAST CELL DISORDERS COMMITTEE WORK GROUP REPORT:
MAST CELL ACTIVATION SYNDROME (MCAS) DIAGNOSIS AND MANAGEMENT

Catherine R. Weiler, MD, PhD,*1 K. Frank Austen, MD, *,2 Cem Akin, MD, PhD,*,3
Marla S. Barkoff, MD,4 Jonathan A. Bernstein, MD,5 Patrizia Bonadonna, MD,6
Joseph H. Butterfield, MD,1 Melody Carter, MD,7 Charity C. Fox, MD,8 Anne
Maitland, MD, PhD,9 Thanai Pongdee, MD,1 S Shahzad Mustafa, MD,10 Anupama
Ravi, MD,11 Mary C. Tobin, MD,12 Harissios Vliagoftis, MD,13 Lawrence B. Schwartz,
MD, PhD*,14

1Department of Internal Medicine, Division of Allergy, Mayo Clinic, Rochester, MN,
USA; 2Department of Medicine, Division of Rheumatology, Immunology and Allergy,
Brigham & Women’s Hospital, Boston, MA, USA; 3Division of Allergy and Clinical
Immunology, University of Michigan, Ann Arbor, MI, USA; 4Private Practice,
Endocrinology, Chicago, IL, USA; 5Internal Medicine, Immunology and Allergy,
University of Cincinnati College of Medicine and Partner of Bernstein Allergy Group,
Inc. and Bernstein Clinical Research Center, LLC, USA; 6Allergy Unit,
Multidisciplinary Mastocytosis Clinic, Azienda Ospedaliera Universitaria Integrata of
Verona, Verona, Italy; 7NIH Clinical Center, Bethesda, MD, USA; 8Department of
Otolaryngology, Division of Allergy and Immunology, The Ohio State University
Wexner Medical Center, USA; 9Department of Medicine, Icahn School of Medicine at
Mount Sinai, New York, NY, USA; 10Allergy and Clinical Immunology, Rochester
Regional Health System, University of Rochester School of Medicine & Dentistry,
Rochester, NY, USA; 11Department of Pediatrics, Division of Pediatric Allergy and
Immunology, Mayo Clinic, Rochester, MN, USA; 12Department of Internal Medicine,
Allergy/Immunology Division, Rush University Medical Center, Chicago, IL, USA;
13Department of Medicine, University of Alberta, Edmonton, AB, Canada;
14Department of Internal Medicine, Division of Rheumatology, Allergy and
Immunology, Virginia Commonwealth University, Richmond, VA, USA

*, CW, KFA, CA and LBS served as senior authors.
Corresponding author: Lawrence B. Schwartz, MD, PhD, Virginia Commonwealth
University, PO Box 980263, Richmond VA 23298 USA. TEL: 804-828-9685. FAX
804-828-0283. Email: lawrence.schwartz@vcuhealth.org

Disclosure of potential conflict of interest: LBS receives royalties for inventing the
tryptase assay from Thermo Fisher, is a consultant for companies in the
mastocytosis or anaphylaxis field, including Genentech, Deciphera, Blueprint
Medicines, and Allakos, receives research support for a mastocytosis clinical trial
from Deciphera, and receives honoraria from Up-To-Date and Cecil Medicine for
writing about anaphylaxis and tryptase. CA consults for Novartis and Blueprint
Medicines for tyrosine kinase inhibitors in mastocytosis and receives research
support for a clinical trial in mastocytosis from Blueprint Medicines; AM is on the
speakers’ bureau for Sanofi/Regeneron and Genentech; SSM is on speaker bureaus
for Genentech, Teva, AstraZeneca, Regeneron and CSL Behring. The rest of the authors declare that they have no relevant conflicts of interest.

Keywords

mast cell activation syndrome; tryptase; hereditary alpha-tryptasemia; mastocytosis; anaphylaxis; Histamine; PGD2; LTC4; c-kit

Abbreviations

aspirin-exacerbated respiratory disease (AERD)
complement anaphylatoxins receptors (C3aR and C5aR)
gain-of-function (GOF)
leukotriene (LT)
mast cell (MC)
mast cell activation syndromes (MCASs)
Mas-related G protein receptor (MRGPRX2)
prostaglandin (PG)
postural orthostatic hypotension with tachycardia syndrome (POTS)
serum (or plasma) acute total tryptase level (sAT)
serum (or plasma) baseline tryptase level (sBT)
Stem Cell Factor (SCF)
systemic mastocytosis (SM)
ABSTRACT

Our current recommendations for diagnosing and treating primary MCAS make use of the latest studies and consensus guidelines for clinically recognizing systemic anaphylaxis in real time, regardless whether allergen-triggered an allergen-triggered IgE:FceRI-mediated pathway or to ligands of G protein receptor pathways, or to intrinsic dysregulation of mast cells; our current understanding of the biomarkers secreted by activated mast cells that best discriminate this disorder from other conditions; and the therapeutic drugs that may selectively affect those mediators or mast cells themselves. Finding familial or somatic mutations of genes that cause mast cells to be hyper-activatable would extend our diagnostic tools and potentially indicate new therapeutic interventions, targeting either the mutated gene product or the associated molecular pathway. In conclusion, we trust that the clinical, laboratory and therapeutic criteria for primary MCAS(s) described herein will provide clinicians with practical criteria of sufficient sensitivity and specificity to diagnose most cases, without over-diagnosing the disorder in patients who likely have other conditions.
BACKGROUND

The last consensus report regarding mast cell (MC) disorders utilized the term mast cell activation syndromes (MCASs) to encompass all the current diagnoses in which MC activation plays a pivotal pathophysiologic role.\(^1\) This included clonal and non-clonal MC disorders. The disorders were divided into primary, where MCs seem to be more activatable, either spontaneously or to a known or unknown external trigger, and secondary, where normal MCs are activated by an external trigger, typically an allergen via IgE:FceRI, but also by antigens via IgG:FcyRI/IIa, a variety of ligands acting on GPCRs, or physical stimuli such as pressure, temperature, or vibration. Disorders associated with primary MCAS include systemic mastocytosis (SM),\(^1, 2\) a clonal disease associated with a somatic gain-of-function (GOF) *KIT* mutation; clonal MCAS, associated with similar *Kit* mutations and/or aberrant expression of CD25, but lacking other criteria needed to diagnose SM by the WHO criteria;\(^1, 3\) hereditary α-tryptasemia,\(^4, 5\) associated with increased copy numbers of the *TPSAB1* gene encoding α-tryptase; and idiopathic MCAS, where neither a trigger, mutation nor genetic trait as yet has been identified.

The term, MCAS, is defined as a primary clinical condition in which patients present with spontaneous episodic signs and symptoms of systemic anaphylaxis, concurrently affecting at least two organ systems and resulting from secreted MC mediators. Symptoms occur in association with the secretion of MC products such as tryptase, histamine, prostaglandin (PG) D\(_2\) and leukotriene (LT) C\(_4\), leading to elevated levels in blood or urine of secreted mediators or of their metabolites,
including N-methylhistamine, 11β-PGF₂α and LTD₄/LTE₄, and should improve with medications that block their binding to receptors or their production. Agents that block receptor binding include H₁R and H₂R antihistamines and CysLTR₁ antagonists, while decreasing production occurs with inhibitors of cyclooxygenase for PGD₂ or of 5-lipoxygenase for LTC₄ or with mast cell stabilizers such as omalizumab that diminish mast cell activatability.

BASIC SCIENCE OF MAST CELL DEVELOPMENT AND ACTIVATION (see Online Repository for further details)

Mast cell development, heterogeneity and activation are inter-related, likely affecting MC activation syndromes. Importantly, MCs develop from progenitors in the bone marrow that mature either in the bone marrow or after being recruited to their tissue site of residence under the influence of Stem Cell Factor (SCF) interacting with the Kit tyrosine kinase receptor on the surface of mast cells. The capacity of MCs to be activated and the mediator pathways elicited may vary among different types of mature and immature MCs. MC mediator secretion can follow engagement of FcεRI and FcγRI/IIa receptors as well as after stimulation of surface G protein-coupled receptors, including complement anaphylatoxins receptors (C₃aR and C₅aR) and Mas-related G protein receptor (MRGPRX₂), and Toll-like Receptors. Depending on what activates MCs, differential secretion of granule mediators and newly-generated mediators can occur.

DIAGNOSIS OF MCAS: CLINICAL SIGNS AND SYMPTOMS
MCAS is a diagnosis that should be entertained in patients with an appropriate clinical and laboratory profile when other conditions have been excluded. Patients with MCAS can have a variable clinical phenotype, affecting multiple organ systems. However, a key feature is recurrent episodes of systemic anaphylaxis with concurrent involvement of at least two of the four organ systems listed below.\(^1\) The clinical symptoms have to be associated with acute increase in specific biologic mediator levels\(^7\) and patients should respond to therapy with mast cell mediator blocking agents and/or mast cell stabilizers. The most validated mediators for their direct clinical impact include histamine, PGD\(_2\) and LTC\(_4\), while the metabolites of these mediators along with tryptase serving as biomarkers for mast cell activation.

As an example, a patient who presents with episodic symptoms affecting two or more organ systems such are syncope, wheezing, diarrhea and/or flushing should be evaluated for MCAS. The evaluation should include measuring mediator levels at baseline and during an acute episode (Table I). If the laboratory findings correlate with the presence of symptoms, then appropriate therapy(ies) should be implemented. The symptoms should resolve with therapies directed at the elevated mediator. If, for example, only urinary histamine products are elevated, then histamine blocking agents may improve the symptoms. If, on the other hand, prostaglandins are elevated, then aspirin (with appropriate precautions discussed later in the manuscript) will reduce prostaglandin levels and should alleviate symptoms. The presence of the specific symptom during which a mediator is
elevated and the clinical response to appropriate therapy are all prerequisites for
the diagnosis of MCAS.

Persistent symptoms, such as occurs in chronic urticaria or poorly-controlled
asthma, should direct the clinician to a different underlying diagnosis. Likewise,
chronic elevation of a mediator, such as tryptase, may reflect underlying SM1, 2 or
hereditary α-tryptasemia,4, 5, 8-11 disorders that can be but are not always associated
with MCAS, (Section 5a, Tryptase). Clinical symptoms of diagnostic value that are
frequently reported by patients with MCAS12-14 include the following:

Cardiovascular: Hypotension, tachycardia and syncope or near-syncope.7, 14-16

Dermatologic: Urticaria, pruritus, and flushing7, 12, 14-16 and angioedema,6
particularly of the eyelids, lips, and tongue.

Respiratory: Wheezing, shortness of breath and inspiratory stridor6, 7

Gastrointestinal: Crampy abdominal pain, diarrhea, nausea, vomiting.6, 7, 12, 14-17

Importantly, two or more of the above organ systems being concurrently
involved in acute, recurrent clinical episodes, consistent with the working
diagnosis of systemic anaphylaxis recommendations,18 would increase the
likelihood of MCAS being culpable (Table II). Symptoms should be associated with acute elevations of mast cell mediators on two or more occasions to establish a diagnosis of MCAS.

Reported triggers or potentiating factors can include hot water, alcohol, drugs, stress, exercise, hormonal fluctuations, infection and/or physical stimuli such as pressure or friction. A connection between such triggers and mast cell activation is generally inconclusive, except in rare monogenic disorders. However, an effort to examine whether biomarkers for mast cell activation are elevated when symptoms are triggered is encouraged.

CONDITIONS OR CLINICAL PRESENTATIONS THAT ARE NOT DIAGNOSTIC OF MCAS

Some publications and lay press information have greatly broadened the clinical criteria for MCAS. Non-validated laboratory tests have been used to collate unrelated symptoms with non-validated laboratory findings to make a diagnosis of MCAS. This has caused confusion for patients and physicians alike. The misconceptions about diagnosing MCAS have affected many patients and impaired their quality of life. More concerning, however, is using the diagnosis of MCAS erroneously and missing a truly treatable underlying condition not related to mast cells.

Clinical criteria that lack precision for diagnosing MCAS, but nevertheless are in use include fatigue, fibromyalgia-like pain, dermatographism, tired appearance,
chronically ill appearance, edema, rashes of many sorts, tinnitus, adenopathy, constipation, prostatitis, chronic low back pain, headache, mood disturbances, anxiety, post-traumatic stress disorder, weight change, hypothyroidism, hyperthyroidism, polycythemia, anemia, abnormal electrolytes, an elevated or decreased level of at least one immunoglobulin isotype and multiple psychiatric and neurologic disorders.20, 22, 27 Also, some signs or symptoms that can occur with MCAS, do not support this diagnosis when they occur in isolation, like abdominal pain and diarrhea, or flushing, or when they are chronic rather than episodic.

Disorders that have been used to diagnosis MCAS with \textbf{no scientific basis for being associated with mast cell activation} include, but are not limited to, Ehlers-Danlos Syndrome,28, 29 postural orthostatic hypotension with tachycardia syndrome (POTS),30-32 sclerosing mediastinitis,33 hematologic non-malignant disorders,34-37 psychiatric and other idiopathic disorders,38-41 solid organ tumors,42-44 obesity, type 2 diabetes mellitus, atherosclerosis, irritable bowel syndrome, inflammatory bowel disease, gastroesophageal reflux disease, essential hypertension, pulmonary hypertension, chronic kidney disease, idiopathic non-ischemic cardiomyopathy, metabolic syndrome, attention deficit/hyperactivity disorder, depression, multiple chemical sensitivity syndrome, autoimmune disorders, endometriosis, polycystic ovarian syndrome, celiac disease and non-celiac gluten intolerance, migraine headaches, neurogenic pain syndrome, restless leg syndrome, and schizophrenia.20 The use of those disorders to support the diagnosis of MCAS had led to the use of unorthodox and potentially harmful therapies such as chemotherapeutic agents45 and tyrosine kinase inhibitors.46, 47
Notably, patients with hereditary α-tryptasemia can have the concomitant diagnosis of Ehlers Danlos syndrome and POTS, but neither of these manifestations are due to MCAS. Nevertheless, MCAS was reported in members of one extended family who have an α-tryptase gene quintuplication, and can occur in those with this condition. But many affected hereditary α-tryptasemic family members do not have MCAS. More research needs to be performed in order to understand the relationship between hereditary α-tryptasemia, to MCAS and other manifestations of this genetic condition.

Our recommendation is that patients should undergo an appropriate workup for their symptoms or condition, and be treated according to evidence-based medical standards. Even with a precise diagnosis of MCAS based on the clinical and laboratory criteria discussed in this report, other conditions need to be correctly diagnosed and treated independently.

DIAGNOSIS OF MCAS: BIOMARKERS AND BONE MARROW

BIOPSY/ASPIRATE (see Online Repository for additional details)

Preformed mediators in mast cell secretory granules

Preformed stored mediators in the cytoplasmic granules include histamine, heparin and chondroitin sulfate proteoglycans, α/β tryptases, and acid hydrolases in all mast cells, while chymase, carboxypeptidase A3, and cathepsin G are found in a subset (MC_Tc) of mast cells. Heparin and chondroitin sulfate E proteoglycans are mainly found in mast cells. Proteases are the major protein component of mast cell
secretory granules. Presently, there are no pharmacologic means for blocking the production and storage of these mediators in mast cell secretory granules.

Histamine

Histamine (2-[4-imidazolyl]-ethylamine) is synthesized from L-histidine by histidine decarboxylase, which removes a carboxylic acid residue from this semi-essential amino acid. Mast cells and basophils each store comparably large amounts of histamine in their secretory granules, whereas other cell types, such as lymphocytes, neutrophils, monocytes, macrophages, and keratinocytes synthesize and secrete histamine, but do not store it intracellularly. Both mast cells and basophils release histamine when they are activated to degranulate. Histamine can also be produced by bacteria colonizing mucosal surfaces or contaminating ingested foods.

Once released, histamine is metabolized rapidly (half-life 1-2 minutes), primarily to N-methylhistamine. Several investigations of urinary histamine metabolites have demonstrated clear utility to aid in the evaluation and diagnosis of SM. However, for investigating MCAS, measurement of urine N-methylhistamine has demonstrated little clinical utility, perhaps because metabolites generated just after mast cell activation were not collected. However it can be supportive if elevated levels are found in conjunction with other mediators, such as PGD$_2$ metabolites. Further studies are needed to evaluate how measurement of urine N-methylhistamine levels may optimally be used for the evaluation and management of MCAS.
Several investigations of urinary histamine metabolites have demonstrated clear utility to aid in the evaluation and diagnosis of SM (Online Repository). However, for investigating MCAS, measurement of urine N-methylhistamine has demonstrated little clinical utility,17,62-64 perhaps because metabolites generated just after mast cell activation were not collected. However it can be supportive if elevated levels are found in conjunction with other mediators, such as PGD\textsubscript{2} metabolites, for which the cell source may be ambiguous. Further studies are needed to evaluate how measurement of urine N-methylhistamine levels may be optimally used for the evaluation and management of MCAS.

Tryptase

The tryptase locus on human chromosome 16 normally contains two genes that encode α or β tryptases, TPSB2, expressing only β-tryptase, and TPSAB1, expressing either α- or β- tryptase.65-68 Each is expressed as a 275 amino acid pretryptase that is rapidly converted to a 257 amino acid protryptase. One portion of these protryptases is continuously secreted by unstimulated mast cells, and is the form detected in serum or plasma collected under non-anaphylactic/baseline conditions for healthy, mastocytosis, or hereditary α-tryptasemia subjects, while another portion of the protryptases is converted to their 245 amino acid mature proteins, which when bound to heparin at acidic pH spontaneously form tetramers that are stored in secretory granules with histamine until the cells are activated to degranulate, thereby secreting them.69 Homotetramers of β-tryptase are active proteases, while those of α-tryptase do not exhibit a known proteolytic activity. A new form of tryptase, α/β-tryptase heterotetramers, forms naturally in mast cells.
and has a distinct substrate repertoire from either homotetramer. In healthy subjects α- and β- tryptases are only produced by mast cells, with one exception, basophils, that contain less than 1% of that present in tissue-derived mast cells. The current commercial tryptase assay (ThermoFisher/Phadia Laboratory Systems, Uppsala, Sweden) measures both mature and pro forms of α and β tryptases, sometimes referred to as total tryptase.

Mature tryptases released during episodes of systemic anaphylaxis triggered by insect stings result in elevated levels of total tryptase detected in serum or plasma that correlate with the magnitude of hypotension during such reactions, while systemic anaphylaxis triggered by ingestion of a food allergen results in lower elevations of mature and total tryptase. In experimental insect sting-triggered anaphylaxis, peak levels of mature tryptase occurred 30 to 90 min after onset of signs or symptoms, and then declined with a t½ of about 2 hours.

Optimal use of the total tryptase assay for diagnosing a mast cell activation event requires an acute sample, optimally collected between 30 min and 2 hours after onset, though a significant elevation in samples collected up to 4-6 hours after the event still can be informative; and a baseline sample collected either before the event or at least 24 hours after all signs and symptoms have abated (Table III). Based on an analysis of retrospective data, a consensus conference of the European Competence Network for Mastocytosis recommended that for a rise in the serum (or plasma) acute total tryptase level (sAT) to be considered clinically significant, the sAT should be greater than the serum (or plasma) baseline tryptase level (sBT).
according to the formula: \[sAT > 1.2xsBT + 2, \] \(^1\) which has been validated in other studies.\(^{77-80}\) Physicians should consider employing this assay and algorithm for any clinical event thought to be due to systemic activation of mast cells, particularly if signs or symptoms of hypotension are present, including in patients with hereditary \(\alpha\)-tryptasemia or with a somatic \(KIT\) GOF mutation.

An elevated sBT value reportedly puts a patient at an increased risk for a variety of clinical problems such as anaphylaxis and food allergic reactions in children, adverse reactions to drugs, to radiocontrast media, to insect stings\(^{81-83}\) and to venom immunotherapy.\(^{84-86}\) However, it would be imprudent to conclude that tryptase itself increases this risk, as it also serves as a surrogate for other underlying factors such as GOF \(KIT\) mutations or elevated TPSAB1 \(\alpha\)-tryptase gene copy numbers, each of which increase the burden and activatability of mast cells.

Hereditary \(\alpha\)-Tryptasemia, an autosomal dominant disorder, has a clinical phenotype that may include dysautonomia with postural orthostatic tachycardia syndrome (POTS), flushing or gastrointestinal hypomotility, joint hyperextensibility with arthritis, vibratory urticaria, irritable bowel syndrome, retained primary dentition, and allergic disorders affecting the cutaneous, respiratory, or cardiovascular systems.\(^5, 8-10\) This genetic defect involves one or more extra copies of the \(\alpha\)-tryptase gene encoded by TPSAB1, resulting in overexpression of \(\alpha\)-tryptase and increased mast cells in bone marrow biopsies. The precise role(s) played by increased expression of \(\alpha\)-tryptase may relate in part to the increased formation of \(\alpha/\beta\)-tryptase heterotetramers, which can make skin mast cells
susceptible to vibration-triggered degranulation and directly activate protease-activated receptor 2 on the surface of cells, which include nerves, smooth muscle and endothelium, and may impact the risk for severe systemic anaphylaxis.70

Spontaneous bouts of hypotension due to POTS are not typically associated with a clinically significant sAT elevation and in such cases do not reflect mast cell activation. Nevertheless, systemic anaphylaxis with elevated sAT over sBT does occur in some α-tryptasemia patients, including spontaneous and insect venom-triggered episodes, making this condition an inherited risk factor for MCAS.4, 5, 11

Newly-generated mediators

As commercial assays are currently available for relatively stable metabolites of PGD\textsubscript{2} and LTC\textsubscript{4}, these are the newly-generated mediators that will be discussed. Platelet-activating factor also has shown promise in food-induced anaphylaxis, but commercial assays are not yet available. Sphingosine-1-phosphate is secreted by mast cells along with other cell types, is rapidly metabolized, and lacks a stable metabolite of proven diagnostic utility. Also, pharmacologic agents are available to block the production of PGD\textsubscript{2} by inhibiting cyclooxygenases 1 and 2, and LTC\textsubscript{4} by inhibiting 5-lipoxygenase.

PGD\textsubscript{2} and its metabolites

PGD\textsubscript{2} is generated from arachidonic acid by the sequential actions, first of either cyclooxygenase 1 or 2 to PGH\textsubscript{2}, and then of either the hemopoietic (H-) or lipocalin (L-) type of PGD synthase to PGD\textsubscript{2}. While L-PGDS is expressed in both the CNS and cardiac tissue,87 endothelial cells,88 and osteoblasts,89 H-PGDS is expressed by mast
cells, megakaryocytes, 90 microglia and astrocytes, 91 dendritic cells, 92 eosinophils, 93 and Th2 lymphocytes, 94 but not by basophils. 95 Large amounts of PGD\textsubscript{2} can be rapidly synthesized and secreted by mast cells activated when Fc\epsilon RI is aggregated, as long as Cox-1 and -2 have not been inhibited by aspirin or other NSAIDs. 96 What activates clinically-significant PGD\textsubscript{2} synthesis and secretion from other cell types is less obvious.

Once secreted, PGD\textsubscript{2} is metabolized by an aldoketoreductase, principally AKR1C3, at the 11-ketone position to an 11\beta-hydroxyl moiety, or 9\alpha,11\beta-PGF\textsubscript{2} (also called 11\beta-PGF\textsubscript{2\alpha}). 11\beta-PGF\textsubscript{2\alpha} can then be metabolized by \beta-oxidation of its carboxyl-terminal, shortening the molecules by 2 carbons, called 2,3-dinor-11\beta-PGF\textsubscript{2\alpha}, and then by \omega-oxidation at the other end of the molecule to the 2,3,18,19-tetranor metabolite (PGD-M). The dinor metabolite of PGD\textsubscript{2} seems to persist longer than the parent and intermediate metabolites, and in urine may be the predominant marker for PGD\textsubscript{2} production. 97 In any assay, these PGD\textsubscript{2}-specific metabolites need to be distinguished from metabolites of either PGE\textsubscript{2} or PGH\textsubscript{2} catalyzed by AKR1B1 9\alpha,11\alpha-PGF\textsubscript{2} (also called PGF\textsubscript{2\alpha}), and its dinor \beta-oxidation and tetranor \omega-oxidation metabolites, which is accomplished by liquid chromatography-tandem mass spectrometry. Elevated levels of these metabolites in 24 hour urine collections, normalized to the creatinine level, or in plasma can provide biochemical evidence for mast cell activation as recommended by the ECNM consensus conference. 1 Levels considered to be elevated are determined by each diagnostic laboratory. The currently available commercial clinical tests for PGD\textsubscript{2} production are the urinary levels of dinor 11\beta-PGF\textsubscript{2\alpha} and of PGD\textsubscript{2}, with the metabolite being preferred because
most of the PGD$_2$ is converted to its metabolite before being excreted.

Measurement of serum PGD$_2$ levels is also available commercially but has not been validated as a diagnostic marker for mast cell disorders.

In 1980 increased PGD$_2$ production in 2 patients with SM was reported, and inhibiting PGD$_2$ synthesis along with blocking histamine binding to its H1 receptor resulted in symptomatic improvement and decreased hospitalizations for hypotensive episodes. In a retrospective study of 25 MCAS patients, baseline 24 hour urine 11β-PGF$_{2\alpha}$ levels were the most frequently elevated mast cell mediator, and flushing and pruritus had the greatest correlation with elevated baseline 11β-PGF$_{2\alpha}$ levels. Eight of 9 patients with MCAS, who had elevated 11β-PGF$_{2\alpha}$ levels at baseline, underwent aspirin therapy. Follow-up urinary 11β-PGF$_{2\alpha}$ levels normalized for patients on aspirin (1 patient did not have a follow-up urine study). Six of these 9 patients with MCAS who underwent aspirin therapy had symptomatic improvement.

Plasma 11β-PGF$_{2\alpha}$ levels were found elevated in systemic allergic reactions to venom in a small number of patients and seem to have promise as a marker of mast cell activation. Another study of serum 11β-PGF$_{2\alpha}$ levels found them to be a more sensitive marker for systemic anaphylaxis than either tryptase or sulfidopeptide leukotriene levels in serum. Questions regarding the time course of 11β-PGF$_{2\alpha}$ levels during anaphylaxis, whether there is a difference between serum and plasma, and what other conditions, if any, result in elevated levels remain to be answered. Thus, as noted above, more research on serum levels of PGD$_2$ or its
metabolites as a validated biomarker for mast cell activation would better inform its positive and negative predictive values.

LTC₄ and its metabolites

LTC₄ is generated when arachidonic acid bound to 5-lipoxygenase activating protein is converted by 5-lipoxygenase to LTA₄ followed by LTC₄ synthase conjugating LTA₄ with reduced glutathione to form bioactive LTC₄, which is then secreted via the ATP-binding cassette transporters-1 and -4. Secreted LTC₄ is rapidly metabolized to LTD₄ as γ-glutamyl transpeptidases remove glutamine, and then to LTE₄, a more stable metabolite, as dehydropeptidase I removes glycine. LTC₄ is produced directly by activated mast cells, basophils, eosinophils, monocytes and macrophages, and indirectly by transcellular metabolism when LTA₄ is transferred from a cell lacking LTC₄ synthase to one that has LTC₄ synthase, which includes platelets.

LTE₄, the most stable cysteinyl leukotriene, is used to monitor this pathway in plasma or urine, because its precursors, LTC₄ and especially LTD₄, are very transient. Urinary LTE₄ levels are often elevated at baseline in SM patients and clinical improvement may occur with montelukast.

Using acute (2 hours after onset) and baseline blood samples of patients presenting to the emergency department with systemic anaphylaxis, cysteinyl leukotriene levels were measured by an immunoassay that detects LTC₄, D₄ and E₄, revealing that acute levels of cysteinyl leukotrienes were elevated above baseline in 6 of 8
patients, tryptase levels in 6 of 9 (by the algorithm) and 11β-PGF$_{2α}$ levels in 8 of
9.79 One of the issues needing further study is whether LTC$_4$ is released into serum
during blood clotting by cells such as eosinophils, basophils or monocytes, or by
platelets through transcytosis, versus by tissue mast cells prior to the blood draw.
In addition to SM, there are several studies showing the utility of measuring urinary
leukotrienes in aspirin-exacerbated respiratory disease (AERD),110,111 and benefit
from leukotriene-modifier drugs.112 A study of urinary LTE$_4$ and 11β-PGF$_{2α}$ levels
following anaphylaxis, measured by immunoassays and normalized to levels of
creatinine, found that they correlated with one another and with anaphylactic
severity.113 Further, 11β-PGF$_{2α}$ levels peaked in the 0-3 hour urine collection, while
LTE$_4$ levels were comparable in the 0-3 and 3-6 hour collections.

In summary, elevations of one or a combination of the above mediators is observed
in a variety of mast cell activation disorders, including allergen-triggered systemic
anaphylaxis as well as systemic anaphylaxis occurring in association with SM,
MCAS, aspirin exacerbated respiratory disease (AERD) and hereditary α-
tryptasemia (Table I). For MCAS, measuring secreted mast cell biomarkers shortly
after the onset of a putative anaphylactic event is likely optimal for all mediators.
Whether serum or plasma is the preferred fraction of blood for lipid mediators will
depend on whether secretion or processing of the mediator occurs in vivo versus ex
vivo, which should be more precisely examined. Comparing acute to baseline levels
is optimal for tryptase, and is likely to be the case for histamine, another preformed
mediator, but needs more research. Having a baseline level to compare to the
acute level may not be as critical for newly-generated lipid mediators or their metabolites, though additional research should help clarify this point.

Bone marrow biopsy/aspirate

A bone marrow biopsy and aspirate are needed to precisely diagnose and stage systemic mastocytosis, which if present would increase the possibility of an associated clonal MCAS. Also, the procedure can identify clonal mast cells with a GOF mutation in *KIT* in the absence of other criteria for diagnosing systemic mastocytosis, a mutation that might be missed in peripheral blood, and by itself would increase the likelihood of an associated clonal MCAS. Also, a patient with clonal MCAS associated with a GOF *KIT* mutation who does not adequately respond to anti-mediator, omalizumab, or other established preventative therapies, might respond to a tyrosine kinase inhibitor targeting the mutated Kit. However, a bone marrow biopsy or aspirate cannot *per se* identify mast cell activation. Also, a buccal swab rather than a bone marrow biopsy is needed to diagnose hereditary alpha-trypa
tasemia, another condition associated with MCAS.

TESTS THAT ARE NOT RECOMMENDED FOR THE DIAGNOSIS OF MCAS (see Online Repository)

Biomarkers for mast cell activation events, as discussed above, should include substances secreted by activated mast cells and for which assays are available with sufficient sensitivity and specificity to clearly distinguish levels during mast cell activation versus basal level and to distinguish mast cell
activation events from other acute conditions. Putative biomarkers of mast
cell activation that are problematic include heparin,37, 62, 114-116 which has not
been validated as a marker of MC activation in blood, and chromogranin
A,117, 62, 118 which resides in neuroendocrine cells but not in mast cells. Also,
for reasons discussed above, neither plasma nor urine histamine levels119, 120,
121 are recommended over histamine metabolites.

MANAGEMENT AND THERAPEUTIC OPTIONS FOR PATIENTS WITH MAST CELL DISORDERS

MCAS presents with a constellation of symptoms related to mediators secreted by
activated mast cells.1 Treatment of MCAS patients is highly individualized, targeted
to bothersome symptoms and the underlying pathology (Table IV). Other coexisting
medical conditions need to be treated by an appropriate specialist.

Acute management of a mast cell activation attack corresponds to the acute
management of systemic anaphylaxis. Hypotensive episodes should be managed by
patients assuming the supine position, followed by administration of epinephrine
IM. Laryngeal angioedema requires epinephrine IM; bronchospasm also can be
treated with epinephrine IM or an inhaled rapidly-acting bronchodilator such as
albuterol. Patients at risk for such events should carry an epinephrine autoinjector
to avoid unnecessary and potentially detrimental delays in treating anaphylaxis.
Among SM patients, 20%-50% experience systemic anaphylaxis,122, 123 typically
with hypotension, rarely with laryngeal angioedema, and should learn the
importance of supine positioning and should carry an epinephrine autoinjector. If epinephrine is used, the patient should strongly consider being taken to the emergency room via ambulance, while remaining in the supine position.

Prevention of future mast cell activation events first involves the *identification and avoidance* of the trigger(s), such as insect venoms, extremes of temperature, mechanical irritation, alcohol, or medications (e.g., aspirin, radiocontrast agents, certain anaesthetic agents). The second step is to attenuate the clinical response to mast cell activation by reducing mast cell mediator production or by blocking the action of mast cell mediators with appropriate medical therapy. The third step may involve reducing the ability of mast cells to respond to activation triggers or, possibly, to reduce mast cell numbers. A SM patient sensitive to insect venom, particularly with a history of systemic anaphylaxis to a prior insect sting, should undergo lifelong venom immunotherapy. Using omalizumab during immunotherapy appears to reduce the risk of anaphylaxis to venom immunotherapy.\(^{124}\) Eliminating additives in drugs used to treat or prevent anaphylaxis by compounding them is not recommended. Although additives have not been evaluated for MCAS patients, for 100 chronic urticaria patients, 43 of whom complained of additive allergies, single or double blind challenges were used to rule this out in all of these patients.\(^{125}\)

Mediator inhibitors

Histamine:

H1R and H2R antagonists
Recommendations for antihistamine therapy for mast cell activation disorders are
based on expert opinion. The objective is to relieve symptoms from secreted
histamine. H1R and H2R anti-histamine receptors work better as prophylactic
than acute treatment, because once signs or symptoms of histamine-mediated
effects are apparent, it is too late to block the binding of histamine to its receptors.
H1R blockers in patients with MCAS reduces dermatologic manifestations such as
flushing and pruritus, along with tachycardia, and abdominal discomfort. These
medications, particularly later generation non-sedating H1R antihistamines such as
fexofenadine and cetirizine, are often used at 2-4 times FDA-approved doses. First
generation H1R antihistamines include diphenhydramine, hydroxyzine, and
chlorpheniramine. A limitation of these medications is their associated sedation,
impairing driving ability and leading to cognitive decline, particularly in elderly
patients, and there is some concern in MCAS patients prone to cardiovascular
events. Cyproheptadine has dual function as a sedating H1R blocker and a
serotonin-receptor antagonist and has been used to treat diarrhea and nausea in
the setting of MCAS. Ketotifen, also sedating, is now available as a compounded
medication in the USA and is used to treat dermatologic, gastrointestinal, as well as
neuropsychiatric symptoms. Rupatadine, an H1R blocker that also blocks PAF
binding to its receptor, is approved for use in many countries, but not in the USA.
In patients with mastocytosis, rupatadine improved control of pruritus, flushing,
tachycardia, and headache, but not gastrointestinal symptoms. Studies of
rupatadine for treating MCAS, as for other antihistamines, were promising, but not
conclusive.
H2R-blocking agents are commonly used to treat abdominal and/or vascular signs or symptoms of MCAS. Options include ranitidine, famotidine, and cimetidine. Much like H1R blockers, most of the data to support the use of H2R blockers is limited to case reports and case series. \(^{133}\) However, H2R anti-histamines prevent histamine-mediated acid secretion from parietal cells and blunt the vasoactive effects of iv-infused histamine if combined with an H1R antagonist. \(^{134}\) Importantly, H1R and H2R blocking agents, especially those with anticholinergic effects, can be associated with cognitive decline that is worse in the elderly populations. \(^{135-139}\)

H3R and H4R antagonists

Therapeutic antagonists for these receptors are in development, and beyond the scope of this current communication, but may have novel clinical value, particularly H4R antagonists that reduce pruritus and inflammation occurring in atopic dermatitis. \(^{140}\)

LTC\(_4\)

Cysteinyi leukotriene receptor antagonists or 5-lipoxygenase inhibition

Other therapies for MCAS include cysteinyi leukotriene receptor blocking agents such as montelukast and zafirlukast, or the 5-lipoxygenase inhibitor, zileuton. These medications may work best in conjunction with H1R antihistamines, being most efficacious for dermatologic symptoms. \(^{106, 108}\)

PGD\(_2\)
Aspirin has been used to attenuate refractory flushing and hypotensive spells associated with PGD\(_2\) secretion by inhibiting its synthesis.\(^{64,141,142}\) Aspirin should be introduced in a controlled clinical setting because of the risk of triggering mast cell degranulation.\(^{64,143}\)

Cromolyn

Oral cromolyn is used predominately for gastrointestinal symptoms, though its mechanism of action is not known.\(^{144,145}\) Cromolyn taken orally or applied topically also may reduce pruritus.\(^{146}\) Patients should be counseled that the onset of action can be delayed, and should be taken for at least one month before deciding whether it is helping. It should be introduced at the lowest dose and the dose gradually increased to 200 mg four times a day, given before each meal and at bedtime.

Glucocorticosteroids

Systemic steroids may help some patients as indicated in case reports, but should be tapered as quickly as possible in order to limit its numerous adverse effects.

Anti-IgE therapy

Omalizumab binds free IgE, preventing its binding to FcεRI, and has been approved for treating poorly-controlled moderate to severe atopic asthma and anti-histamine-resistant chronic urticaria. The mechanism of action of omalizumab remains incomplete, but may affect the activation threshold of mast cells when surface levels of FcεRI are reduced by blocking IgE binding. For example, omalizumab
reduces the severity and frequency of allergic reactions during aeroallergen rush immunotherapy and insect venom immunotherapy in mastocytosis patients.147-151 Omalizumab also prevents spontaneous episodes of anaphylaxis in case reports and case series.152-155 Omalizumab is an expensive therapeutic option, though case reports support its benefit in prevention of anaphylaxis, emergency room visits and lost time from work. Therefore, it should be considered in cases of MCAS resistant to mediator-targeted therapies.

Cytoreductive Therapies

For patients with clonal MCAS in advanced SM (aggressive SM, mast cell leukemia or sarcoma, SM associated with a non-MC hematologic clonal disorder, and in some cases of smoldering SM) with signs and symptoms refractory to anti-mediator therapy, cytoreductive therapy should be considered. Two of the most commonly used agents have been IFN-\textalpha and cladribine. Commonly-observed adverse events of IFN-\textalpha include flu like symptoms, depression, hypothyroidism and a variety autoimmune disorders.156 Cladribine can be efficacious in advanced SM patients with severe life-threatening or disabling anaphylaxis,157, 158, 159 but is associated with an increased risk of infection.

Signal transduction inhibitors have been considered for MCAS that cannot be adequately controlled by safer interventions. Based on laboratory studies, inhibitors of Kit tyrosine kinase decrease mast cell activatability and survival, and thus may be helpful in MCAS.160 **Midostaurin** is a multi-kinase inhibitor (Tyr and Ser/Thr kinases) with activity against wild type and D816V Kit and has been approved for
Although nausea, vomiting, and cytopenias are relatively common, for most patients nausea can be controlled by taking ondansetron 30-60 min prior to midostaurin, and cytopenias can be managed by adjusting the dose of midostaurin. This agent may replace IFN-α and cladribine in the treatment paradigm for clonal mast cell disorders.

Masitinib is a tyrosine kinase inhibitor with activity against wild type Kit and Lyn tyrosine kinase and has been used to treat mediator related symptoms in MCAS, but asthenia is a common side effect. Imatinib has been used but is not indicated if the D816V mutation or another mutation at this position is present, which causes resistance to this agent. Ibrutinib (used to treat mantle cell lymphoma, chronic lymphocytic leukemia and Waldenstrom macroglobulinemia) decreases IgE-mediated reactivity, but not non-IgE mediated mast cell activation. Patients with advanced SM, including those with mast cell leukemia, were treated with a more selective D816V Kit inhibitor, avapritinib, in a Phase 1 trial and experienced rapid and durable responses with manageable side effects. Another inhibitor of D816V Kit, DCC2618, is in a Phase 1 trial for smoldering and advanced SM.

Current studies, using a monoclonal antibody targeting Siglec-8 reported that in humanized mice eosinophil numbers in the circulation and mast cell activation tested by passive cutaneous anaphylaxis were both reduced, but data in humans has not yet been published.
Whether such newer therapies targeting signaling pathways will have a favorable long-term benefit to toxicity ratio for treating MCAS remains to be determined, but may depend in part upon whether such drugs inhibit mast cell activation at substantially lower concentrations than those causing cytoreduction.

Prognosis and length of therapy

There are no specific studies evaluating the prognosis of patients with MCAS. Some with clonal MCAS may progress to SM, most likely indolent. None of the patients in the Mayo Clinic cohort followed17 for over 15 years developed mastocytosis. However, data regarding patients with indolent SM demonstrate a normal life expectancy.17,175-180 We propose treatment based on symptoms and elevated levels of mast cell mediators. For example, if a patient with MCAS has elevated urinary LTE\textsubscript{4} levels, then leukotriene antagonists are recommended; if elevated urinary PG metabolite levels, then treatment with aspirin may help. Therefore, the therapeutic intervention should be adjusted to fit each patient.

DIFFERENTIAL DIAGNOSIS

Clinical presentations of patients with MCAS are discussed in section 4 and outlined in Table II. It should be noted that there is a wide differential diagnosis. For example, flushing is not limited to mast cell disorders, but is a hallmark of other conditions as well.181-184 These include benign flushing,185-188 familial flushing and endocrine disorders189 such as hyperthyroidism and hormone withdrawal.190-192 Neuroendocrine tumors such as carcinoid193-196 and pheochromocytoma197,198 cause spells and flushing as well. Dermatologic conditions such as rosacea,188
medications,199, 200 reduced alcohol metabolism,201 and other less common
conditions202-204 are also associated with flushing. It is beyond the scope of this
communication to discuss the diagnostic workup and treatment of all conditions
that might clinically mimic certain signs or symptoms of MCAS.

\textbf{CURRENT CLASSIFICATION AND UNMET NEEDS}

Our current recommendations for diagnosing MCAS make use of the latest studies
and consensus guidelines for clinically diagnosing systemic anaphylaxis in real time,
regardless whether allergen-triggered through the IgE pathway or via other
pathways; our current understanding of the mediators secreted by activated mast
cells that best discriminate this disorder from other conditions; and the drugs that
may selectively affect those mediators or mast cells themselves. Whether precise
measurement of additional mediators will provide complementary and clinically
useful insight, such as platelet-activating factor, heparin, chymase or
carboxypeptidase A3, requires further research. Also, our recommendations do not
address the occurrence of local mast cell activation. An increase in the number of
mast cells in the gastrointestinal tract or elsewhere, by itself, does not diagnose
mast cell activation or indicate that mast cell activatability is affected. Whether the
plasticity of human mast cells, governed largely by their local tissue or
inflammatory environment, might affect their activation in a clinically-significant
manner needs to be better understood. The detection of an activating KIT mutation
such as D816V in peripheral blood or tissues, demonstrates clonality; surface
expression of CD25 on mast cells is a surrogate marker for clonality; and the
presence of dense aggregates of spindle-shaped mast cells suggests underlying
mastocytosis. Finding familial or somatic mutations of other genes that identify
hyper-activatable mast cells would extend our diagnostic tools and potentially
indicate new therapeutic interventions, targeting either the mutated gene product
or the associated molecular pathway. In conclusion, we trust that the clinical,
laboratory and therapeutic criteria for primary MCAS(s) described herein will
provide clinicians with practical criteria of sufficient sensitivity and specificity to
diagnose most cases, without over-diagnosing the disorder in patients who likely
have other conditions. We propose a modified algorithm for the diagnosis of
patients with suspected MCAS in Fig 1.
REFERENCES

41. Haenisch B, Molderings GJ. White matter abnormalities are also repeatedly present in patients with systemic mast cell activation syndrome. Transl Psychiatry 2018; 8:95.

68. Trivedi NN, Tong Q, Raman K, Bhagwandin VJ, Caughey GH. Mast cell alpha and beta tryptases changed rapidly during primate speciation and evolved...

FIG 1. Algorithm for Diagnosing MCAS

GOF, gain of function.

*Somatic KIT mutation assays have limited sensitivity;*205-210 germ line TPSAB1 α-tryptase CNV test is available from GenebyGene (Houston, TX). If peripheral blood allele-specific D816V KIT mutation is negative, perhaps due to a low allelic KIT mutation burden211 or to a different GOF KIT mutation, but REMA212 (gender; sBT; pruritus, hives or angioedema; presyncope or syncope) or NIH213 (similar to REMA plus allele-specific D816V Kit PCR on peripheral blood) score is positive, then a bone marrow study for a GOF KIT mutation should be considered.
Table I: Mast cell serum tryptase and urinary mediators in different disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Serum Tryptase (ng/mL)</th>
<th>Urinary Mediators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NMH**</td>
</tr>
<tr>
<td>SM (baseline)</td>
<td>>20 (75% of cases)</td>
<td>++/4^217-221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+/+^219, 222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+/+^107, 109, 219</td>
</tr>
<tr>
<td>MCAS (acute)</td>
<td>>sBT*1.2 + 2^17, 77</td>
<td>-/4^219</td>
</tr>
<tr>
<td></td>
<td></td>
<td>++^17</td>
</tr>
<tr>
<td>α-Tryptasemia (baseline)</td>
<td>>8^5, 9, 11</td>
<td>?</td>
</tr>
<tr>
<td>AERD* (acute aspirin or NSAID SA reaction)</td>
<td>>sBT*1.2 + 2</td>
<td>?</td>
</tr>
</tbody>
</table>

*, AERD, Aspirin exacerbated airway disease; **, NMH, N-methylhistamine, †, 11β-PGF_{2α}; ‡, LTE₄; sBT, serum baseline tryptase level (ng/mL); +, mildly elevated (10-30% above upper limit of normal range); ++, moderately elevated (31-70% above upper limit of normal range); ++++, highly elevated (>70% above upper limit of normal range); ?, unknown.
TABLE II. Organs systems affected during anaphylaxis and the associated symptoms of their involvement which are of diagnostic value for MCAS

<table>
<thead>
<tr>
<th>Cardiovascular</th>
<th>Respiratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension</td>
<td>Wheezing (inspiratory or expiratory)</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>Shortness of breath</td>
</tr>
<tr>
<td>Syncope of near syncope<sup>6, 7, 14, 16</sup></td>
<td>Inspiratory stridor<sup>6, 7</sup></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dermatologic</th>
<th>Gastrointestinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flushing</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>Urticaria<sup>6, 7, 14, 16, 126</sup></td>
<td>Nausea with vomiting</td>
</tr>
<tr>
<td>Pruritus</td>
<td>Crampy abdominal pain<sup>6, 7, 12, 14, 16, 17</sup></td>
</tr>
<tr>
<td>Angioedema<sup>6</sup></td>
<td></td>
</tr>
</tbody>
</table>

As recommended for the working diagnosis of systemic anaphylaxis, symptoms affecting at least 2 of these 4 organ systems should occur concurrently.¹⁸
Table III. Tryptase algorithm for diagnosing systemic anaphylaxis: 1, 77, 78, 80, 226

\[\text{sAT} > (1.2 \times \text{sBT}) + 2 \]

1. Neither an sBT nor an sAT by itself has sufficient sensitivity to assess a MC activation event, regardless if outside of or within the normal range.

2. Sensitivity increases with clinical severity, primarily correlating with hypotension.

3. The optimal time to collect an acute blood sample, based on experimental insect sting-triggered anaphylaxis, is 30 to 120 min after onset of symptoms; sensitivity diminishes outside of this range.

4. The optimal time to collect a baseline blood sample is either prior to the event or at least 24 hours after all signs and symptoms have resolved.

5. This test has high specificity (>90%), while sensitivity varies with time of collection, clinical severity, and the trigger.
Table IV. Treatment Interventions for MCAS

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
<td></td>
</tr>
<tr>
<td>Avoidance of known triggers</td>
<td></td>
</tr>
<tr>
<td>Pharmacologic Agents for Prevention</td>
<td></td>
</tr>
<tr>
<td>H1R Antihistamines*</td>
<td>Non-sedating H1 histamines are generally preferred and may be increased to 2-4 times the standard dose; sedating H1 antihistamines may acutely cause drowsiness and impair driving ability, and chronically lead to cognitive decline, particularly in the elderly.</td>
</tr>
<tr>
<td>H2R Antihistamines</td>
<td>Can be utilized as first line therapy for GI symptoms and may help H1R antihistamines attenuate cardiovascular symptoms</td>
</tr>
<tr>
<td>Cromolyn sodium (oral formulation)</td>
<td>May reduce abdominal bloating, diarrhea and cramps. Benefit may extend to neuropsychiatric manifestations. Divided dosing and weekly upward titration to reach desired target dose may improve tolerance and adherence</td>
</tr>
<tr>
<td>Doxepin*</td>
<td>Potent H1 + H2 antihistamine with tricyclic antidepressant activity may reduce the CNS manifestations in MCAS or SM, but may cause drowsiness and cognitive decline, particularly in the elderly, and may increase suicidal tendencies in children and young adults with depression</td>
</tr>
<tr>
<td>Aspirin</td>
<td>May reduce flushing and hypotension in some patients, particularly those with elevated urinary 11β-PGF2α, but contraindicated in those with allergic or adverse reactions to NSAIDs. Clinical improvement may require dosing increase up</td>
</tr>
</tbody>
</table>
Steroid taper/Steroid burst | May be useful for refractory signs or symptoms. Initial oral dosage of 0.5 mg/kg/day followed by a slow taper over 1-3 months. May be helpful to give Prednisone 50 mg 13, 7 and 1 hour prior to radiologic or invasive procedures where mast cell activation has been problematic. Steroid side effects dampen enthusiasm for long term use.

Omalizumab | Cases indicate prevention of anaphylactic episodes in some MCAS or SM patients, or in those who cannot otherwise tolerate needed insect venom immunotherapy.

Cysteinyl leukotriene inhibitor (e.g., montelukast) or 5-lipoxygenase inhibitor (zileuton) | May reduce bronchospasm or gastrointestinal symptoms in MCAS or SM, particularly if urinary LTE\textsubscript{4} is elevated, but not well-studied.

Cyproheptadine | Sedating H1 antihistamine with extended anticholinergic and antiserotonergic activities. May help GI symptoms.

Ketotifen | This sedating H1R antagonist is approved in the USA for allergic eye disease, but can be compounded as tablets. Whether beneficial beyond other antihistamines, like diphenhydramine, is unproven.

Acute Management

Epinephrine autoinjector | Patients with a history of systemic anaphylaxis or airway angioedema should be prescribed this device and instructed how and when to use it.

Supine positioning | Those with recurrent hypotensive episodes should be trained to assume a supine position as soon as possible, using a bedpan for diarrhea and an emesis basin after rolling on to their side or...
*Cognitive decline has been reported for H1 blockers that have anticholinergic effects. This is especially worrisome in the elderly population.135-139, 227
Recurrent symptoms consistent with mast cell activation with involvement of two organs (Table II)

AND

Elevation of one or more validated Mast Cell Mediators in association with the symptoms (Table I)

AND

Response to targeted therapeutic interventions (Table II)

TEST

Peripheral blood or bone marrow GOF KIT Mutation or buccal swab increased TPSAB1 α-tryptase CNV*

IF

Positive

THEN

Primary MCAS with somatic or germ line mutation

IF

Negative

THEN

MCAS without known mutation