MCAS has been divided into three, non-mutually exclusive, forms:

1. **Primary MCAS (also known as clonal MCAS)** is caused by underlying monoclonal mast cell disorders such as monoclonal mast cell activation syndrome (MMAS) and mastocytosis (where the patient also meets the diagnostic criteria for MCAS). These conditions are defined by the over-proliferation of mast cells and are typically the result of mutations in the KIT gene and/or aberrant expression of CD25 or CD2.

2. **Secondary MCAS** is not the result of an underlying clonal disorder; mast cells are produced at normal or ‘near normal’ levels. However, in this condition, mast cells are inappropriately activated during immunoglobulin (Ig)E- and/or non-IgE mediated allergic reactions to typically unharmed triggers.

3. **Non-clonal idiopathic MCAS** refers to cases where no defined allergic or autoimmune cause has been identified.

Charlotte’s Story
As a newborn, Charlotte continuously cried, slept poorly and had dry skin which was irritated, red and swollen on her face. At 4 months old, Charlotte developed hives, vomited frequently in response to feeding and had atypical bowel movements. Her triggers continued to grow in number and severity, leading to hospital admission with low weight, hives and eczema at 6 months old. At 1 year old, Charlotte’s lips swelled after every feed, and she developed a raspy-sounding chest. Charlotte was diagnosed with suspected MCAS at 2 years old.

Though previously described as a rare disease, it appears that this holds true only for primary MCAS and that secondary and idiopathic MCAS cases may be more prevalent. For instance, hereditary alpha tryptasemia syndrome (HATS), a recently identified condition shown to overlap substantially with MCAS, is reported to affect 4% of the general population.

Diagnosing MCAS

Due to the wide range of possible symptoms, triggers and potential causes (as well as the need for further research into the disease area), MCAS can be extremely challenging to diagnose. Most MCAS diagnostic processes focus on four key sets of criteria:1–3

1. The presence of typical clinical symptoms across multiple body systems. When taken together, these four key sets of diagnostic criteria can lead to a confident MCAS diagnosis. However, the multi-stage and ‘trial and error’ approach which is often necessary for MCAS cases can see patients with MCAS, and their families, waiting a long time for a definitive diagnosis.

2. Biochemical evidence of mediator release from mast cells. Tryptase serum tests are the best known diagnostic mediator test for MCAS particularly clonal MCAS) and are most reliable when carried out within a short time window following acute symptom episodes (anaphylaxis). However a negative tryptase test result does not exclude MCAS. Other mediators that are indicative of MCAS include histamine, prostaglandin D, leukotriene E4 and heparin.4 When considered alongside other diagnostic evidence, a positive mediator test can increase the confidence of a diagnosis of MCAS.

3. ‘Test of treatment’ is underpinned by the theory that if a patient responds to a known MCAS treatment, this provides evidence to suggest that the individual has MCAS.

4. Discounting other potential diagnoses is an important part of the process towards ensuring an accurate diagnosis of people with MCAS. Conditions which should be ruled out include infectious diseases, irritable bowel syndrome, neoplasms, autoimmune disorders and cardiovascular disorders such as myocardial infarction1.

Additional diagnostic support is provided by the Royal College of General Practitioners, within the clinical toolkit for Ehlers-Danlos Syndromes.5

Jensen’s story

From birth, Jensen has struggled with a range of debilitating symptoms across multiple body systems including diarrhoea, urinary incontinence, severe genitourinary pain, hives and sores, anxiety, and syncope.

These reactions occur in response to ever-changing triggers, particularly foodstuffs. Doctors had previously diagnosed Jensen with iron deficiency anaemia, fructose malabsorption, histamine intolerance, chronic idiopathic urticaria and angioedema, with a range of associated treatments which had varying degrees of success.

In 2016, an allergist appointment led to a positive test result for elevated tryptase and a potential MCAS diagnosis. Jensen was later prescribed sodium cromoglicate, ketotifen, cetirizine and fexofenadine; a combination of treatments which stabilised Jensen’s mast cells and alleviated many of his symptoms.

Since then, a genetic test has confirmed that Jensen has triplication of the TPSAB1. Jensen has therefore been diagnosed with hereditary alpha tryptasemia syndrome (HATS).

References:
Managing MCAS

There is currently no cure for MCAS. Therefore, the aim of treatment is to reduce the occurrence and/or severity of symptoms in patients in order to improve their quality of life. This can be achieved using self-management techniques, medicinal products, or a combination of both.

Self-Management

Avoiding triggers is a key part of managing MCAS and relieving symptoms.1,2 If patients have identified specific triggers of their symptoms – for example, specific foods or chemicals, exercise or stress – these triggers should be avoided as much as possible to prevent potentially debilitating reactions. However, MCAS triggers are often challenging to identify and new triggers may develop over time. When patients are particularly unstable, the range of triggers and severity of reactions can increase. Further, it is not always possible or practical for people with MCAS to avoid triggers, particularly in public spaces. As a result, self-management of MCAS via trigger avoidance is an extremely challenging and complex task.

Medical Management

There is currently a wide range of potential treatment options, many of which stabilise mast cells (to prevent them from releasing mediators inappropriately) or mitigate the effects of the mediators they produce.1,2

Due to the vast range of genetic causes, mediator release, triggers and symptoms across individual MCAS cases, it is by no means guaranteed that a treatment that works for one patient will work for another. The response to treatment can be unpredictable, and further complicated by the possibility that some drugs (or the additives or preservatives in them) will in fact trigger adverse reactions in patients.2 It can often be a drawn-out process to identify a successful treatment regime.

However, with a dedicated ‘trial and error’ approach, many patients are eventually able to find a treatment that works for them.

It is hoped that with further research, it may be possible to personalise medical treatment based on an individual’s specific causal MCAS pathway, biochemical mediator profile or range of symptoms.

Suzy's Story

Suzy began experiencing a range of inflammatory symptoms when surgeons inadvertently left titanium clips inside her after a gall bladder operation. Her symptoms reduced temporarily upon the removal of these clips. However, the operation to remove the clips led to an umbilical hernia which was repaired using surgical mesh. Suzy's symptoms quickly returned.

Suzy was diagnosed with Ehlers Danlos Syndrome (EDS), but felt that this did not adequately explain her symptoms. A private immunologist agreed that her symptoms appeared to be consistent with MCAS, and prescribed sodium cromoglicate. Unfortunately, this treatment triggered a serious anaphylactic reaction. This led to the prescription of ketotifen (an alternative mast cell stabiliser) which alleviated some of Suzy's low level symptoms. Attempts to relieve Suzy's other symptoms frequently resulted in additional episodes of life threatening anaphylaxis. Oral steroids were effective only for a few months. Suzy's triggers increased in number and severity, and Suzy suffered adverse reactions to the adrenaline which was used to treat the resultant anaphylaxis. Treatment with omalizumab is being considered by a specialist allergy clinic for Suzy, to increase the manageability of her symptoms.
How Can We Offer Patients With MCAS Better Support and Medical Care?

Diagnosis of MCAS Can Take Decades

The term MCAS was first introduced in 2007, with expert-agreed diagnostic criteria published in 2012.1 Whilst MCAS is now well-known to immunologists, more general awareness and acceptance of MCAS as a recognised condition is limited among healthcare professionals, particularly in general practice, where patients are likely to first seek a diagnosis. However, awareness in emergency care, for example following an anaphylactic episode, is also low. Even if doctors are aware of MCAS, it can be difficult and time-consuming to get a formal diagnosis. There is no definitive test and people often resort to private practice, where they can pay to have access to testing.

We need to promote more debate using patient experiences to build up the evidence base for MCAS. Establishing a patient registry to capture patient symptoms and their response to different treatments, would lead to a better understand of MCAS and its possible treatments.

Although there are cheap and effective treatments available that can greatly improve quality of life, patients often need to try many different treatments before finding one that helps with their symptoms.

Even after MCAS has been diagnosed, patients do not have a clearly defined ‘home’ within the NHS. There is a need for greater access to multidisciplinary teams, where patients with MCAS can receive continuity of care in order to manage their symptoms and to, ultimately, enhance their quality of life.

Lack of co-ordination between specialists can create confusion, leading to multiple appointments across different healthcare services, disjointed treatment and significantly delayed diagnosis (or even misdiagnosis).

Mast Cell Action is a patient support and advocacy charity for people affected by MCAS.

For further information contact: info@mastcellaction.org
Visit us at: mastcellaction.org

Please visit the ‘Resources for Medical Professionals’ section of our website for more information on MCAS diagnosis, a range of educational materials, and a bibliography including the latest publications on mast cell activation disorders.