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Abstract

Introduction: An increasing number of patients present with multiple symptoms affecting many 

organs including the brain due to multiple mediators released by mast cells. These unique tissue 

immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also 

stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, 

leading to secretion of multiple mediators often without histamine and tryptase. The presentation, 

diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, 

specialists have recently excluded neuropsychiatric symptoms, and made the diagnostic criteria 

stricter, at the expense of excluding most patients.

Areas covered: A literature search was performed on papers published between January 1990 

and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, 

brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, 

mastocytosis, mediators, myalgic encephalomyelitis/chronic fatigue syndrome, mycotoxins, 

release, secretion, tetramethoxyluteolin, and tryptase.
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Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell 

mediator, in the absence of any comorbidity that could otherwise explain such increases, should be 

considered mast cell activation disorders, or better yet be collectively termed ‘Mast Cell Mediator 

Disorders (MCMD).’ Emphasis should be placed on the identification of unique mast cell 

mediators, and development of drugs or supplements that inhibit their release.
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1. Introduction

Over the last few years, there has been an unusual increase in atopic diseases, including 

allergies, asthma, eczema, rhinitis, and food sensitivities. In addition, there have been 

numerous cases of patients presenting with symptoms consistent with allergies, and/or 

inflammation, affecting many organs, but no recognizable trigger or too many non-allergic 

triggers. These symptoms (Table 1) originate from mediators secreted (released) from mast 

cells and include flushing, pruritus, hypotension, gastrointestinal complaints, headaches, 

irritability, malaise, memory loss, and neuropsychiatric issues. As a result, a number of 

different names have been proposed to capture these symptoms such as mast cell diseases or 

mast cell disorders (MCD) and mast cell activation diseases or mast cell activation disorders 

(MCAD).

Unfortunately, these are many confusing aspects both in the naming and diagnosis of such 

disorders. First, the term ‘activation’ is typically reserved for activation of receptors or 

enzymes while ‘stimulation’ is used for cells. Second, stimulation of mast cells may imply 

proliferation without secretion of all or even any mast cell mediators as in the case of mast 

cell sarcoma. Next, the term ‘secretion’ is usually reserved for mediators stored inside 

secretory granules, while the term ‘release’ is used for both pre-stored and newly 

synthesized mediators. Be it as it may, release of mast cell mediators can occur in many 

physiologic and pathologic settings. To make matters worse, there are a number of other 

diseases that mimic and/or are comorbid with diseases involving mast cells (Table 2). As a 

result, affected patients often go for 10–20 years and as many physicians of different 

specialties before a diagnosis is made, by which time they have been prescribed numerous 

medications, often with severe drug interactions that further complicate their presentation 

and course of their disease.

2. Mast cell biology

Mast cells are immune cells derived from hematopoietic precursors and mature in tissue 

microenvironments [1]. Mast cells are critical for the development of allergic reactions [2], 

but also act as sensors of environmental and psychological stress [3,4]. Perivascular mast 

cells were shown to probe cutaneous blood vessels by extending philopodia through 

endothelial gaps and capture immunoglobulin E (IgE) from blood vessels [4], a process that 

might also allow mast cells to sense and capture other circulating molecules. Mast cells also 
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participate in the innate immune system (host defense against infectious pathogens, 

neutralization of toxins) and in the adaptive immune response [5–9], but also in antigen 

presentation [10,11] regulation of T cell responses [12–14], even in the absence of antigen 

presentation [15], autoimmunity [16], and inflammation [17–19].

Mast cells are located in tissues that interface with the external environment [20] and are 

stimulated primarily by IgE-dependent reactions (allergen). In addition to allergens, mast 

cells are also stimulated by a variety of different triggers (Table 3) that include bacteria, 

drugs, foods, fungi, heavy metals, organophosphates, viruses, and ‘danger signals’ [2], as 

well as certain neuropeptides including corticotropin-releasing hormone (CRH) [21], 

neurotensin (NT) [22,23], and substance P (SP). Both NT [24,25] and SP [26–29] are known 

to participate in inflammatory processes. Many cationic drugs have now been shown to 

stimulate mast cells through activation of the low affinity G-protein-coupled receptor 

MRGPRX2 [30]. Mast cells commonly respond to non-allergic triggers leading to mediators 

may also be released selectively without degranulation making it difficult to identify these 

mast cells with routine histology [31] (Table 4).

Upon stimulation, mast cells secrete preformed mediators (Table 5) such as β-

hexosaminidase (β-hex), histamine, tumor necrosis factor (TNF), and tryptase through rapid 

(1–5 min) degranulation. Mast cells are the only cell type that stores preformed TNF [32], 

which is rapidly secreted and influences T cell recruitment and activation [33–35]. Mast 

cells also release newly synthesized phospholipid products such as prostaglandin D2 (PGD2) 

and leukotrienes [36–38]. Mast cells also secrete numerous de novo synthesized protein 

mediators typically 6–24 h after stimulation such as cytokines [39], chemokines (TNF, 

CCL2, CCL8), and peptides hemokinin-1 (HK-1), and renin [19,40] (Table 4). Mast cell-

derived CCL2 and CXCL8 enhance recruitment of other immune cells to the site of 

inflammation [41].

Moreover, corticotropin-releasing hormone (CRH or factor, CRF) is also synthesized by 

mast cells [42] implying that it could have autocrine effects [17,43]. In particular, CRHR-1 

is expressed on human cultured mast cells, activation of which induces production of 

vascular endothelial growth factor (VEGF) without tryptase [21].

Mast cells can secrete IL-31, which is particularly pruritogenic [44], as well as additional 

‘danger’ signals [45] (Table 4). Mitochondrial DNA (mtDNA) [34,46] can lead to auto-

inflammatory responses [47–50], augment allergic responses [51], and has direct neurotoxic 

effects [52]. We had reported that mtDNA is increased in the serum of children with autism 

spectrum disorder (ASD) [53]. Another key danger signal is the alarmin IL-33 [54], which is 

secreted by fibroblasts and endothelial cells, and has been implicated in many allergic [55] 

and inflammatory [56] diseases. IL-33 augments the effect of IgE on secretion of histamine 

from mast cells and basophils [54,57]. It is interesting that the most widely used herbicide 

glyphosate induces IL-33 expression and airway inflammation [58].

We showed that IL-33 augments the ability of SP to stimulate secretion of VEGF from 

human mast cells without degranulation [59]. We recently also reported that SP and IL-33, 

when administered in combination, lead to an impressive increase in the gene expression and 
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secretion of TNF [60] and IL-1β [61] from cultured human mast cells. Mast cells can 

secrete IL-33 [62,63], as well as the SP-related peptide HK-1 [64], implying autocrine 

augmentation. Moreover, tryptase secreted from mast cells acts on extracellular IL-33 and 

generates mature, more active IL-33 [65], which then stimulates mast cells to secrete IL-1β, 

which in turn stimulates mast cells to secrete IL-6 [66]. In addition, mast cell-derived TGFβ 
promotes the development of Th17 cells and mast cells can also secrete IL-17 themselves 

[67].

Stimulated mast cells can secrete their numerous bioactive mediators [19,68,69] utilizing 

different signaling [70–73] and secretory [70,74] pathways. One important pathway is that 

of mammalian target of rapamycin (mTOR) [75], which we have shown to be stimulated by 

SP in human cultured mast cells [76]. The ability to secrete multiple mediators allows mast 

cells to actively interact with other cell types in their surrounding environment, especially T 

cells [77,78]. It is interesting that secretion of mast cell mediators have been shown to be 

regulated by a circadian clock [79,80].

Each mediator could lead to specific clinical features. For instance, histamine is associated 

with headaches, hypotension, and pruritus; tryptase with inflammation and fibrinogen lysis; 

cytokines and chemokines with constitutional symptoms of generalized inflammation and 

fatigue, PGD2 with flushing, and leukotrienes with bronchoconstriction. As a result, mast 

cell-derived mediators could contribute to the pathogenesis of not only allergic diseases, 

asthma and mastocytosis [2], but also in atopic dermatitis, psoriasis, myalgic 

encephalomyelitis/chronic fatigue syndrome (ME/CFS) [81], fibromyalgia syndrome (FMS) 

[82], coronary artery disease, and obesity [83], as well as ASD [17,50,84].

The severity of symptoms depends on many factors, such as the capacity of mast cells to 

secrete mediators, the levels of circulating IgE, the presence of cytokines and chemokines 

[85], especially IL-33 [59], as well as the co-existence of high-risk conditions, such as 

stimulation by hymenoptera venom(s) especially in patients suffering from mastocytosis 

[86–89]. Reactivity to wasp stings could lead to anaphylaxis, characterized by the sudden 

onset of severe flushing, swelling of the throat, bronchoconstriction, and hypotension that 

may progress to death [90]. Basophils also participate in allergic and other inflammatory 

reactions in-ways somewhat similar to that of mast cells, except that their main trigger is IgE 

and they do not contain tryptase [91,92]. Various assays have been proposed to document the 

involvement of basophil activation [93,94], via identification of CD63 and CD203c [93–95].

3. Classification and diagnostic features of mast cell disorders

This topic is quite confusing because of the use of different terminology by various 

specialists and consensus groups. For instance, the terms ‘mast cell diseases,’ ‘mast cell 

disorders,’ and ‘mast cell syndromes’ are often used interchangeably. In this review, the term 

‘mast cell disorders’ is used as it includes many variants or subtypes.

Disorders involving mast cells [96,97] have been traditionally classified into three general 

categories: primary, secondary, and idiopathic [98,99]. However, new information on the 

genetic and epigenetic causes of the occurrence and severity of the symptoms [100] requires 
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a new approach to the understanding and classification of these disorders as shown in Table 

6. Historically, ‘primary’ has been used to imply that these disorders are caused by genetic 

and/or epigenetic alterations leading to functional consequences in proliferation of mast cells 

in the bone marrow, skin, or other tissues/organs.

3.1. Clonal mast cell proliferation disorders

3.1.1. Systemic mastocytosis—Systemic mastocytosis (SM) is defined by mast cell 

involvement of at least one extracutaneous tissue typically in the bone marrow, if certain 

criteria are fulfilled [101]: one major criterion of mast cell clusters in bone marrow biopsy 

and one minor criterion (e.g. elevated basal serum tryptase, spindle-shaped mast cells), or 

three minor criteria established by the World Health Organization (Table 7) [102]. However, 

these criteria are strongly based on the presence of a ‘gain-of-function’ mutation in the gene 

KIT at codon 816 (D816V) or other codons nearby. Systemic mastocytosis can be 

characterized as (a) indolent, (b) aggressive, or (c) associated with a hematologic non-mast 

cell lineage disease. Sometimes a single bone marrow biopsy may miss mast cell clusters. In 

our study, only 17% of patients had evidence in one biopsy, but 83% of patients had 

evidence of mastocytosis when two iliac crest biopsies are taken [103].

Mast cells should be identified by immunohistochemistry for both tryptase and KIT 

(CD117), the surface receptor for stem cell factor (SCF), because KIT indicates the presence 

of all mast cells whether they have degranulated or not while the presence of tryptase or lack 

thereof indicates the degree of degranulation. CD117 is considered the marker of choice for 

the GI tract, especially in the portal triads. Flow cytometric immunophenotyping using 

antibodies against tryptase, CD117 (KIT), and CD25 could be performed in peripheral blood 

in suspected cases before advancing to bone marrow biopsies (Figure 1). Mast cells are low 

at bone marrow smears, and many cells are damaged making it difficult to identify abnormal 

mast cells.

Typically, patients are considered candidates for bone marrow biopsy is: (a) Tryptase >20 

ng/ml; (b) have a history of previous hypotensive episodes and/or syncope; (c) diffuse 

cutaneous mastocytosis (CM) in adult patients; (d) unexplained anaphylaxis or explained 

anaphylaxis provoked with hymenoptera stings even when specific IgE testing to 

hymenoptera is negative [104–106]. Bone marrow or peripheral mast cells should then be 

tested for the presence of the KIT mutation D816V, which is present in over 90% of patients 

with SM [107]: (e) Insect-induced anaphylaxis with symptoms different than those of SH 

[108]; (f) Presence of unexplained osteoporosis, hepatomegaly, and splenomegaly (suspicion 

for an aggressive variant of SM) [104]; (g) Abnormalities on peripheral blood count in 

patients with a MCAD (several hematologic non-mast cell lineage such as chronic 

myelomonocytic leukemia and myelodysplastic syndrome, but also other myeloproliferative 

neoplasms and lymphoproliferative diseases) [109] (Figure 1).

The most common mutation found in patients with SM is the point mutation located at 

codon 816 of KIT which affects mast cells: (a) It promotes the autonomous growth and 

expansion of the neoplastic mast cells [110]; (b) It can trigger mast cells to release IL-6 at 

high concentrations of SCF [111]. The D816V mutation may also be expressed in 

individuals in whom criteria for SM are not fulfilled [86,99,106,112–114], in which cases, 
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the patients are considered to have monoclonal mast cell activation syndrome (MMAS) (see 

below). There are some additional, but not as common, functionally activating mutations of 

KIT (e.g. D419H, V560G), which do not induce detectable morphological alterations of 

affected mast cells; these mutations can still influence the evolution of the disease and/or the 

manifestation of certain symptoms [59].

Some other gene mutations (e.g. FIP1L1-PDGFRA) result in a constitutively activated 

platelet-derived growth factor receptor-α (PDGFRA) and have been associated with a 

primary eosinophilic disorder. In one study, 10 (56%) of 19 patients with systemic mast cell 

disease associated with eosinophilia carried this specific mutation, which when present is 

indicative of underlying systemic mastocytosis [115].

3.1.2. Cutaneous mastocytosis—In this subcategory, affected skin most commonly 

presents as urticaria pigmentosa (UP) or diffuse CM, and less frequently as bullous CM or 

solitary mastocytoma [96,116]. Different from adults with CM, bone marrow biopsy is not 

recommended for children [117,118]. It is generally considered that pediatric CM regresses 

by puberty in most children [116], but there have not been any systematic longitudinal 

studies to prove this point. However, increased serum baseline total tryptase identifies 

children at risk for SM [119], as does the presence of maculopapular cutaneous mastocytosis 

[120] [121] or detection of KIT D816V in peripheral blood [122]. It is interesting that KIT 
D816V is not present in most skin lesions suggesting that there may be committed stem cells 

outside the bone marrow. In this case, the molecules triggering mast cell proliferation in the 

skin may be NGF [123], RANTES [124], or even CRH acting on precursors in the hair 

follicle mesenchyme [125]. It is interesting that new UP lesions in children often occur in 

areas of trauma.

Telangiectasia macularis eruptive persistans is a variant of CM, not associated with urticaria 

[126].

3.1.3. Monoclonal mast cell activation disorder—This subcategory is limited to 

patients with systemic reactions to hymenoptera stings, who rarely have increased baseline 

serum tryptase, or in patients with unexplained episodes of anaphylaxis [127]. In these 

patients, bone marrow biopsy detects monoclonal mast cells that carry the mutant KIT 
D816V also detectable in bone marrow aspirate [128], and/or aberrant expression of CD2 or 

CD25. However, criteria for diagnosis of SM are not fulfilled, as only one or two minor 

criteria are met [104].

In conclusion, while symptoms due to release of mast cell mediators are present in most of 

the primary mast cell disorders, they also differ considerably: (a) Multifocal bone marrow 

mast cell aggregates and possible UP are only found in patients with SM; (b) D816V KIT 
mutation and aberrant CD25 expression on bone marrow mast cells characterizes patients 

with SM and monoclonal mast cell activation disorder (MMAD); (c) elevated baseline 

tryptase, and elevated baseline 24-h urine methylhistamine or PGD2/11β-PGF2α is found in 

most affected patients; (d) The response to anti-mediator therapy is variable and likely 

ineffective in patients with idiopathic anaphylaxis (IA) [99].
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3.2. Reactive mast cell disorders

In these patients, no mutation of KIT D816V is found and flow cytometry is often negative 

for the expression of CD25 [98].

3.2.1. IgE-mediated hypersensitivity reactions—These are typical reactions (e.g. 

food, insect), due to aggregation of high-affinity IgE receptors (FcεRI) by allergen-bound 

IgE as was discussed earlier.

3.2.2. Drug-induced—Mast cells can respond to numerous drugs such as muscle 

relaxants, nonsteroidal anti-inflammatory, opioids, taxanes, and vancomycin. Such drugs can 

stimulate mast cells either directly or indirectly through G-coupled receptors [129]. It was 

recently discovered that the MRGPRX2 receptor is responsible for pseudo-anaphylactic 

reactions to many cationic drugs [30].

3.2.3. Mast cell hyperplasia—Hyperplasia in this context may be defined as increased 

disseminated mast cell density. This subvariant includes different diseases such as chronic 

infections, neoplasia, and autoimmune conditions that can stimulate mast cells through 

different mechanisms [98]. For instance, psoriasis is characterized by aberrant IFN-γ, which 

triggers mast cells through upregulation of high-affinity IgG receptors [130]. Mast cells in 

patients with rheumatoid arthritis are stimulated via C3a and C5a by binding to their 

respective receptors [130]. In patients with infectious diseases, mast cells are stimulated 

through the direct activation of Toll-like receptors (TLR) [131] that recognize molecular 

patterns common to microbial or viral pathogens.

However, there have been a number of reports of increased number of mast cells in the 

intestine of patients with SM [132], but also in the absence of SM in which case they may be 

termed ‘intestinal mastocytosis’ [133].

4. Mast cell mediator disorders

4.1. Clonal mast cell proliferation disorders

Most of these patients could have symptoms consistent with release of mast cell mediators.

4.2. Non-clonal mast cell mediator disorders

Most patients fall under this category that has also been called non-clonal mast cell 

activation disorder (nc-MCAS), mast cell activation syndrome (MCAS), or idiopathic 

MCAS[127] (Figure 2) depending on whether specific criteria are fulfilled [99,134–136]:

The second criterion listed above was recently modified [137,138] by excluding neurological 

symptoms, and emphasizing serum tryptase levels invariably leading to two subclasses of 

such patients, with or without serum tryptase elevations. In contrast, the symptom surveys of 

the mastocytosis society noted that >90% of patients reported ‘brain fog’ [139] as their 

major complaint and ‘stress’ as a key trigger [140,141]. Neuropsychiatric symptoms have 

been reported on many occasions [142–145]. Moreover, patients with mast cell disorders are 

profoundly affected by emotional stress via CRH [21,33,38,43]. In one case, UP expanded 

dramatically after emotional stress [146], while in another bone marrow mast cells were 
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shown to express CRHR-1 [147]. In addition to the potential triggers already discussed, one 

should include the effects of mold and mycotoxins in neuropsychiatric diseases [148,149]. 

For instance, yeast stimulates mast cells to secrete IL-6 and TNF without degranulation 

[150] and so does Borrelia burgdoferi spirochetes [151].

The disorders in this subcategory have no identifiable causes, no allergen-specific IgE and 

no detectable clonal mast cells, based on D816V KIT mutation. Environmental or 

endogenous stimuli, intrinsic mast cell defects may be involved. The best way to describe 

the status of the mast cells is that they are ‘unstable,’ exhibiting aberrant stimulation [152]. 

This ‘unstable’ status of mast cells may be affected by positive and negative signals [153], 

lower stimulation threshold, or even ‘normal’ secretion of mast cell mediators, but with an 

abnormal response of the surrounding tissues (e.g. deficiency of catabolic enzymes such as 

diamine oxidase and histamine N-methyltransferase). Moreover, unstable mast cells may 

retain a ‘metabolic memory’ of past triggers that prime mast cells to respond more rapidly 

and more severely to exposure of the same or different triggers even though the original 

trigger may no longer be present. One such example would be the ability of stress via CRH 

to prime mast cells for the action of IgE [51] or NT [23].

Diseases such as carcinoid syndrome, pheochromocytoma, gastrinoma, and VIPoma, which 

could explain many of the symptoms have to be ruled out through specific diagnostic tests. 

For instance, serum chromogranin A is a biomarker for carcinoid syndrome, but not for SM 

[154]. If mast cell clonality is absent, mast cell mediators (e.g. serum tryptase, and 24-h 

urine N-methylhistamine, PGD2, 11β-PGF2α ) are measured in symptomatic patients (Figure 

1). If these are not elevated, further clinical evaluation is necessary [118]. Idiopathic MCAS 

may be an underlying cause of various other frequent clinical presentations, like in subsets 

of patients with ME/CFS [81], fibromyalgia syndrome [82], and IBS [155,156].

‘Activation’ is usually inferred by release of mast cell mediators [157], primarily focusing 

on increased serum tryptase levels. However, serum tryptase levels could be both inadequate 

and misleading as mast cells can secrete many mediators especially cytokines and 

chemokines without any tryptase [31,60,61]. Tryptase is a key specific mediator for mast 

cells and it is recommended as the marker of choice, even though it is also released in small 

quantities by basophils [158,159]. Serum tryptase is usually detected with the B12 

monoclonal antibody (mAb), which binds both alpha and beta tryptase. The G5mAb is 

bound with 10× more affinity to beta tryptase, so the alpha one is calculated as the difference 

between total and beta tryptase. The minimal increase in serum tryptase required as 

indicative of mast cell activation has been reported to be defined from the following 

equation: 20% of baseline tryptase level + 2 ng/ml + the baseline tryptase level = the value 

above which the definition of mast cell activation is met [98], usually ≥ 20 ng/ml. However, 

the sensitivity of this algorithm decreases with increased interval between resolution of 

symptoms and blood-draw [138]; moreover, there is no published data supporting this 

equation as has been extensively discussed in the past [160].

In addition, tryptase measurement could be affected by several conditions leading to false 

positive results: (a) presence of rheumatoid factor, (b) measurement of serum tryptase within 

0.2–4 h after appearance of symptoms [98] if a symptomatic baseline level of serum tryptase 
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is available, then a rapid increase is considered a reliable index; (c) the baseline has to be 

assessed after the patient’s complete recovery or during a symptom-free interval at least 24–

48 h after complete resolution of all symptoms [161–163]; and (d) the sensitivity of tryptase 

algorithm decreases with decreasing clinical severity [138].

Histamine is specific for mast cells, but serum levels are not useful because histamine is 

metabolized very quickly (<1 min). Moreover, serum levels may be increased due to (a) 

release from basophils [158,159]; (b) tissue injury; (c) venous stasis, hemolysis or clotting 

during blood collection and sample preparation, or improper centrifugation/storage; (d) a 

diet rich in histamine [164]. The most informative test is measurement of the metabolite N-

methylhistamine (30% of histamine) or 1-methyl imidazole acetic acid, MIA (60% of 

histamine) in 24 h urine or first morning urine collection, but must be kept cold during 

collection and sent to the laboratory cold; moreover, the patient should avoid consumption of 

foods containing biogenic amines (e.g. bananas, cheeses, spinach, sour crow, cumin, and 

other spices for 24 h before blood draw).

Serum PGD2 may be useful, but its release can come from (a) cellular elements through 

processing of peripheral blood samples; (b) due to a diet rich in niacin or niacin products 

used to treat atherosclerosis [165]; and (c) there are no established criteria for its normal 

serum levels. Moreover, PGD2 is rapidly metabolized in blood and it should best be detected 

by measuring its metabolite 11β-PGF2αas was discussed earlier. One paper reported that out 

of 25 patients studied with MCAS, 24 urine 11β-PGF2α was elevated in most and best 

correlated with flushing and itching [166].

Heparin is a specific mast cell mediator, and its increase in serum of SM patients has been 

documented [167].

In the absence of any inflammatory disease, serum IL-6 has been shown to correlate with 

disease severity and prognosis in SM [168–170]. A recent paper reported that increased 

serum levels of CCL2 strongly correlated with aggressive SM [171]. We recently reported 

impressive secretion of IL-31 from cultured human mast cells stimulated by IL-33 with or 

without SP or IgE [44]. Increased levels of SP were reported in the serum of SM patients 

[172].

4.3. Idiopathic anaphylaxis

These patients are characterized by (a) life-threatening anaphylactic reactions; (b) increased 

baseline levels of tryptase between the episodes; (c) absent mast cell clonality; and (d) acute 

onset of the disease. Anaphylaxis may be different in patients with IA (urticaria is present 

and serum IgE is significantly elevated) and patients with indolent SM (urticaria is absent 

during anaphylactic episodes and serum tryptase levels are significantly elevated) [112]. 

Recent evidence indicates that dendritic cells may deliver allergens to mast cells in the skin 

via extracellular microvesicles (exosomes) [173]. Evidently, mast cells can also secrete 

extracellular microvesicles [174] that may be directed specifically to T cells [175].
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5. Histamine sensitivity

One must also consider patients who are either sensitive to histamine or have mutations in 

the gene diamine oxidase rendering them unable to metabolize histamine.

6. Activation threshold

There can be many reasons why mast cells can be stimulated to release their mediators 

(Table 8). Combination of triggers is more important than individual ones as they can lower 

the stimulation threshold of mast cells and ‘prime’ them for additional triggers [176] (Table 

8). There are numerous examples of synergistic effects of different triggers. We reported that 

combination of CRH and NT have synergistic action in stimulating VEGF secretion without 

tryptase [23], as well as induce the expression of each other’s receptors on human cultured 

mast cells [177]. We also showed that NT [177] and SP [178] increase expression of 

CRHR-1 on human mast cells. Moreover, SP increases expression of the IL-33 receptor ST2 

and IL-33 increases NK-1 receptor on human mast cells [60]. Stimulation of mast cells by 

SCF also cross-activates ST2 [179].

7. Comorbidities

Symptoms alone and response or lack thereof to medication is not sufficient for diagnosis as 

many of the symptoms could derive from other pathologic entities, whether they implicate 

mast cells or not. Nevertheless, the presence of multisystemic manifestations of symptoms at 

the same time and in the absence of any other systemic disease is highly suspicious for the 

presence of some mast cell disorder. Symptoms suggestive of mast cell disorders that could 

be due to other conditions include: (a) ‘flushing’ is associated also with menopause, 

carcinoid syndrome, pheochromocytoma, medullary carcinoma of the thyroid gland, as well 

as ingestion of niacin; (b) cardiovascular disturbances may be related to myocardial 

infarction, endocarditis, autonomic dysfunction (dysautonomia), and postural orthostatic 

tachycardia syndrome (POTS), (c) gastrointestinal problems may implicate irritable bowel 

syndrome (IBS), food toxicity especially from spoiled scombroid fish (e.g. tuna) that 

generates large amounts of histamine, or neuroendocrine tumors such as VIPoma; (d) 

neurologic symptoms may be associated with panic attacks, migraines, epilepsy, and central 

nervous system (CNS) tumors; (e) respiratory signs may be part of asthma, ‘heartburn,’ 

angioedema; and (f) skin symptoms may be associated with acute toxic dermatoses, 

psoriasis, high parathyroid hormone (PTH), pemphigus vulgaris, and systemic lupus 

erythematosus (SLE). Other comorbid diseases include coronary hypersensitivity [180,181], 

and multiple chemical sensitivity syndrome (Table 1) [182]. Two particularly relevant 

diseases are Myalgic Encephalomyelitits/Chronic Fatigue Syndrome (ME/CFS) and ASD 

[81], both of which have recently been associated with focal inflammation of the brain 

[183].

We had reported that children with mastocytosis have a 10-fold higher risk of developing 

ASD [184]. ASD is a pervasive neurodevelopmental disorder characterized by deficits in 

communication, as well as the presence of restricted, repetitive behaviors [185–187]. 

Allergic symptoms, due to mediators secreted from mast cells, have been significantly 
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correlated with ASD severity [183,188]. A recent paper reported that diffuse cutaneous 

mastocytosis with the novel somatic KIT mutation K509I was associated with tuberous 

sclerosis, most of the may affected patient of which have ASD [189]. Large epidemiological 

studies have reported that allergies and asthma in preschoolers are significantly associated 

with ASD [190–193]. A similar conclusion was reached in a systematic review showing a 

significant association between atopic dermatitis and ASD [194]. Moreover, the presence of 

allergic symptoms strongly correlated with the presence of serum autoantibodies against 

brain peptides [195,196] in children with ASD [197].

Inflammation is a complicated immune process that involves numerous components 

depending on the tissue and trigger [198]. The specific role of cytokines in inflammation of 

the brain is still poorly understood as these ‘danger signals’ [45] are now divided into three 

different groups: (a) inflammatory cytokines, (b) alarmins, and (c) stressorins, with distinct 

patterns of secretion and biological properties [199]. Innate immunity of the brain involves 

primarily microglia [200], which communicate with mast cells [201,202]. Mast cell-derived 

mediators, such as histamine and tryptase, can activate microglia [203] leading to secretion 

of pro-inflammatory mediators including interleukins IL-1β, IL-6, and TNF, known to be 

increased in the brain of children with ASD [204]. Mast cells are found in the brain [205], 

especially the hypothalamus, thalamus, and third ventricle [206,207]. Mast cells are also 

found in the pineal, the pituitary, and the thyroid glands [3].

Mast cells can function as the ‘immune gate to the brain’ [208] as they can regulate 

permeability of the blood–brain barrier (BBB) [209–211] and are involved in 

neuroinflammation and brain disorders [76,212].

Therefore, a detailed medical history including type, duration and triggers of symptoms, 

careful and focused physical examination, and specific laboratory tests, is necessary for a 

proper clinical evaluation. Family history is of great importance because the prevalence of 

MCD is higher among relatives of MCD patients than would be expected by chance [213].

8. Treatment approaches

8.1. Disclaimer: although treatments are discussed, no endorsement or statement of 
safety is implied.

Unfortunately, the genetic cause of proliferative mast cell disorders and the effects of the 

multiple mediators released are reasons for the lack of curative treatments [214–216]. 

Limiting exposure to triggers, and reduction of symptoms is the main aim of treatment. 

Inhibiting secretion of mediators, especially cytokines, would be desirable [39],

Common triggers include alcohol, preservatives, spices, heat, cold, drugs [antibiotics, 

nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, neuromuscular junction blocking 

agent], radiocontrast media, hymenoptera stings, physical stimuli (pressure, friction), 

estrogen, and stressful conditions [113]. Reactions to hymenoptera may be the manifestation 

of nc-MCAD [217], and these patients should carry diphenhydramine (Benadryl, preferably 

liquid gels) and self-administered intramuscular epinephrine (EpiPen or AnaPen). Patients 

are usually administrated antihistamines, montelukast, and cromolyn (Table 9).
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8.2. Antihistamines

Prevention of mast cell proliferation and secretion of mast cell mediators is the ultimate 

goal. Patients are typically treated with histamine (H1,H2)-receptor antagonists 

(antihistamines) (Table 9). Second generation antihistamines are preferred (loratadine, 

cetirizine, fexofenadine) because of less sedation and absence of any effects on cardiac 

excitation [218]. However, before or during invasive procedures (e.g. radiology studies), the 

first generation diphenhydramine or hydroxyzine would be best. Ketotifen, an H1-receptor 

antagonist, is also a weak ocular mast cell inhibitor and may be used as a third option [219]. 

A number of patients who present with eosinophilic esophagitis or gastroenteritis are best 

treated with rupatadine, which also has anti-platelet activating factor (PAF) and anti-

eosinophilic properties actions [220]; rupatadine can also inhibit cultured mast cells 

[220,221]. The H2-antihistamines (ranitidine, famotidine) are used to block gastric 

hypersecretion [117]. However, histamine-1 receptor antagonists also have anticholinergic 

effects [222], and excessive doses may be associated with urinary retention [223] and 

negatively affect mental status [224,225].

8.3. Mast cell inhibitors

Despite the common use of the term ‘mast cell stabilizers’ [226], there are no such clinically 

effective drugs. Disodium cromoglycate (cromolyn sodium), known as a ‘mast cell 

stabilizer,’ reduces mostly GI symptoms, such as abdominal bloating and pain. Cromolyn is 

administered orally and is divided into doses [117]. Cromolyn causes tachyphylaxis [227], 

making it necessary to increase the dose from 100 mg tid to 400 mg tid over the course of a 

year. However, cromolyn is difficult to dissolve, less than 5% is absorbed orally and can 

cause severe diarrhea in about 15% of patients. Cromolyn can also cause alopecia in about 

10% of patients. Recent data have even cast some doubt on the ability of cromolyn to 

stabilize human mast cells [228], and its beneficial effect on pruritus might be mediated by 

inhibition of C-fiber peripheral sensory nerves, instead [229].

8.4. Leukotriene receptor antagonists

Increased secretion of leukotriene E4 has been reported in mastocytosis [230]. The cysteinyl-

leukotriene receptor antagonist montelukast may be used in patients with refractory 

symptoms, especially patients with pulmonary involvement (asthma, wheezing).

8.5. Acetylsalicylic acid

Some patients with refractory flushing and elevated urinary 11β-PGF2a have overproduction 

of prostaglandins [230]. These patients may benefit from acetylsalicylic acid (ASA) for 

clinical improvement [117,231,232]. However, others may experience hypersensitivity 

reactions and require desensitization treatment [230,233].

8.6. Omalizumab

Whether patients have elevated serum IgE or not, they may derive significant benefit from 

frequent use of omalizumab, an anti-IgE humanized murine mAb, approved for allergic 

asthma, and chronic urticaria. Omalizumab also improves patients in whom IgE levels are 

not pathologically increased [234]. Omalizumab, reversibly binds to the Fc portion of the 
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free serum IgE molecules, forming circulating immune complexes and reducing IgE binding 

to FcεRI on mast cells and basophils. As a consequence, FcεRI expression is down-

regulated and, surprisingly, reactivity of these cells to other triggers (e.g. pressure) is also 

reduced [235]. A newer version of omalizumab, mepolizumab, may be equally suitable.

However, omalizumab can also form complement-fixing immune complexes that may lead 

to serious hypersensitivity reactions including severe ‘serum sickness-like’ reactions and 

should be administrated in a clinic under supervision. Both the US FDA and the EU EMA 

have directed inclusion of these potential serious adverse effects in the specialized 

information accompanying this drug.

Given that omalizumab targets components of the immune system, it may potentially 

increase the risk of infections or neoplasms.

8.7. Corticosteroids

Corticosteroids could be of great benefit in patients with refractory symptoms especially 

after resuscitation from an acute episode of anaphylaxis along with the use of subcutaneous 

epinephrine (EpiPen), and β-agonists [117]. However, there are reported instances of 

sensitivity to steroids, and their prolonged use is associated with asteoporosis, and 

depression.

8.8. Venom immunotherapy

Treatment with lifelong venom immunotherapy (VIT) is necessary for patients with 

MMCAS after hymenoptera stings, especially if they test positive for venom specific IgE 

[236]. This treatment could have life-threatening side effects and should be undertaken with 

caution in a clinic under supervision after weighing the risk-benefit for the individual 

patient.

8.9. Immune Ig

In certain cases, where all else has failed, patients may be treated with immune Ig (ivIg).

8.10. Specific agents

Patients with advanced SM without the D816V KIT mutation may be treated with the 

tyrosine kinase inhibitor (TKI), imatinib. Another TKI, dasatinib, inhibits D816V KIT 

expressing mast cells in vitro, but has not been proved successful in clinical trials. A protein 

kinase C (PKC) inhibitor (previously known as PKC412) approved recently, midostaurin, 

can inhibit mast cells expressing D816V KIT and was recently approved for advanced forms 

of clonal proliferative mast cell disorders such as aggressive SM and mast cell leukemia 

[237]. However, PKC is an important enzyme present in most cells, not only mast cells; 

hence, the benefit–risk assessment must be carefully weighed. An experimental TKI, 

avapritinib (formerly known as BLU-285) appears to have even greater ability to reduce 

mutated KIT mast cells [238].
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8.11. Flavonoids

Flavonoids such as quercetin (3′, 4′, 5, 7, 9-pentahydroxyflavone) and luteolin (3′, 4′, 5, 7-

tetrahydroxyflavone-NOT lutein, which is a carotenoid) are naturally occurring polyphenolic 

compounds with potent anti-oxidant, anti-inflammatory, and neuroprotective actions acting 

by inhibiting multiple targets [239–241]. It was previously shown that flavonols containing 

more hydroxyl groups have greater anti-oxidant and anti-inflammatory activity 

[19,209,242], as well as anti-asthmatic effects [218].

8.11.1. Luteolin—Luteolin inhibited mast cells [76,243–245] and decreased histamine 

secretion in bronchoalveolar lavage fluid from conscious ovalbumin sensitized guinea pigs 

exposed to aerolized ovalbumin [246]. Luteolin-7-O-glucoside inhibited degranulation and 

leukotriene production from bone marrow mast cells [247]. Luteolin also inhibited 

stimulation of human T cells [78], keratinocytes [248], and astrocytes [249]. Luteolin 

inhibited microglial activation and proliferation [250–254]. A luteolin containing 

formulation was recently shown to have significant benefit in children with ASD [242,255].

Luteolin also has neuroprotective actions [256–258] and protected against thimerosal-

induced inflammatory mediator secretion from human mast cells [244] as well as from 

methylmercury-induced mitochondrial damage [259]. Luteolin induced synthesis and 

secretion of neurotrophic factors including nerve growth factor (NGF), Glia-derived growth 

factor (GDGF), and brain-derived neurotrophic factor (BDNF) [260]. Luteolin is structurally 

related to 7,8-dihydroflavone, which was shown to have BDNF activity [261], and reduce 

symptoms in a mouse model of Rett syndrome, most patients with which have symptoms of 

ASD [262]. Moreover, 3ʹ,4ʹ-dimethoxyflavone was shown to be protective against 

parthanatos [263].

Both luteolin and tetramethoxyluteolin blocked stimulated intracellular calcium increase 

[245] and activation of NF-κB in human leukemic HMC-1 mast cells [264]. Moreover, 

polyphenols have been reported to inhibit mast cell secretion by interfering with the 

secretory vesicle fusion [265]. The substitution of luteolin’s four hydroxy groups by 

methoxy groups apparently enhances its anti-inflammatory activity and its benefit in 

neurodegenerative diseases [266–268].

Flavonoids are difficult to absorb (<10%) after oral administration [269,270] and are 

extensively metabolized [270–272]. We have been investigating the luteolin structural analog 

3ʹ,4ʹ,5,7-tetramethoxyflavone (tetramethoxyluteolin), it is a more potent inhibitor than 

luteolin on human cultured microglia [251] and mast cells [76]. Methylation of dietary 

flavones greatly improved metabolic stability and intestinal absorption [273].

Flavonoids are generally considered safe [274–277], and can even protect against chemically 

induced liver toxicity, a common consequence of many drugs [278]. Moreover, neither 

luteolin nor tetramethoxyluteolin affects viability of cultured human mast cells [245], T cells 

[78] or keratinocytes [279]. Luteolin also improved symptoms of ASD [242,280], post-Lyme 

syndrome [281], and brain fog [139] without any major adverse effects.
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However, there should be caution against using flavonoid preparations of unknown source 

and purity because the cheapest sources are peanut cells and fava beans that could lead to 

anaphylaxis or hemolytic anemia in G6PD individuals, respectively.

Treatment with luteolin should best be used together with a tetramethoxyluteolin containing 

skin lotion [282], and requires a few weeks before mast cells are sufficiently inhibited. 

Luteolin may also be combined with vitamin D3, which has been reported to have anti-

allergic actions [283].

9. Summary

A possible treatment approach of patients with mast cell mediator release disorders would be 

as follows (Table 9): (1) Antihistamines (cetirizine, diphenhydramine, hydroxyzine); (2) 

antihistamines with anti-eosinophilic action (ketotifen, rupatadine); (3) antihistamine with 

antiserotonin action (cyproheptadine); (4) tricyclic antidepressants with combined 

antihistamine action (doxepin); (5) flavonoids (luteolin, quercetin of high purity and 

increased absorption); (6) antileukotrienes (montelukast); (7) cromolyn sodium; (8) steroids 

(methylprednisolone); (9) epinephrine (EpiPen, AnaPen); (10) anti-IgE (omalizumab), 

kinase inhibitors (imatinib, mitostaurine, avapritinib) should be reserved for aggressive SM 

or mast cell leukemia.

Bone pain is quite common in patients with mast cell disorders and should be addressed 

[160,216]. Unlike morphine, which is a strong trigger of mast cells, the synthetic opioids 

tramadol and piritramide (not available in the US) seem to be tolerated. Ketamine and/r 

propofol, alone or with loaratadine, could be used for anesthesia. Some patients could also 

tolerate transdermal fentanyl. Low-dose naltrexone, an opioid receptor antagonist, may also 

be helpful.

Patients with migraine headaches could be helped prophylactically with cyproheptadine or 

with prochlorperazine, both of which also inhibit human mast cells [284].

10. Expert opinion

Recent reviews stress the role of mast cells in health [285] and disease [215,286], especially 

their responsiveness to non-allergic triggers [286,287]. There has been considerable progress 

in defining KIT mutations and developing drugs that block tyrosine kinases (TK) that are 

involved in mast cell proliferation [288]. However, it has become clear that KIT mutations 

alone are not able to induce a mast cell proliferative disorder; as a result, the aim of recent 

research for therapeutic agents is the development of multitargeting drugs. Moreover, our 

understanding of mast cell stimulation by non-IgE mediated triggers remains poor, and there 

are still no clinically effective inhibitors of mast cell mediator release. One of the possible 

reasons for this problem has been the over-reliance on use of rodent mast cells, the results 

from which have increasingly been shown not to reflect human inflammatory diseases [289].

Moreover, both immortalized and primary normal mast cells cultured from peripheral blood 

or umbilical cord blood require 8–12 weeks of growth and are ‘immature’ with poorly 

developed secretory granules [60]. More importantly, mast cells from different tissues are 
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phenotypically very different [290]. For instance, brain mast cells do not express FcɛRI 

[207], skin mast cells are triggered by morphine, while heart mast cells are not. Moreover, 

we still do not know differences in cytokine/chemokines release or other mediators. It would 

be desirable to identify mechanisms and mediators that may contribute to useful physiology 

as compared to pathological function, and thus stimulate them or inhibit the, respectively. 

For instance, mast cells have been reported to regulate wound healing in diabetes [291], but 

contribute to cancer growth and metastasis [292].

Finally, there is the mystery of the presence of mast cells in neuroendocrine organs, such as 

the pineal, hypothalamus, pituitary, thyroid, and the uterus [3], where the pathophysiologic 

function of the mast cells remains unknown. These findings may possibly explain our 

observation that many females with MCMD report increased libido and orgasms [3]. An 

intriguing relevant observation was the increase of number of mast cells in the habenula of 

female pigeons during courting [293], and the development of a female ‘phenotype’ in 

newborn female rats in which mast cells were stimulated [294].

Research efforts should focus on (a) establishing normal mast cell cultures that mimic those 

in different tissues; (b) investigating the ability of mast cells to respond to different triggers 

with selective release of mediators; (c) identifying the molecular events involved in mast cell 

release of inflammatory mediators; (d) studying the role of growth factors other than SCF, 

such as NGF and platelet-derived growth factor (PDGF); (e) investigating the synergistic 

actions of triggers, such as SP an IL-33; (f)determining the role of extracellular 

microvesicles [295]; (g) as well as identifying any innate inhibitors such as the polyamines 

agmantine (the product of the decarboxylation of arginine) [296] or spermidine and 

spermine (the products of the decarboxylation of ornithine) [297,298], as well as heparin and 

chondroitin sulfate [299].

One paper reported on a prototype inhibitory receptor (mast cell functional-associated 

antigen, MAFA), which selectively regulates FcεRI-stimulated mast cell secretion of IL-1β 
and CXCL8, but not TNF or MCP-1 [300], but there has not been any apparent further 

development.

There has been recent interest in the potential mast cell inhibitory ability of the anti-

inflammatory cytokine IL-37 [301–303], at least in diseases where mast cells have been 

implicated [303,304], but direct inhibition of human mast cells has not been reported so far.
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Article highlights

• The term MCMD should be used when specific criteria.

• Tryptase is specific for mast cells and is used for diagnosis, but is often not 

secreted and its function is still not known. Measurement of other serum mast 

cell mediators, especially IL-6 and IL-31, as well as CCL2 and CXCL8, and 

urine (24 h) histamine metabolites (methyl histamine, MIA), the PGD2 

metabolite (11β-PGF2α), and LTE4 should be considered in the absence of 

any other inflammatory conditions.

• Screening tissue sections for mast cells should combine 

immunohistochemistry for CD117 (identifies all mast cells) and tryptase 

(identifies degranulated mast cells).

• Single cell laser microcapture and qRT-PCR should be used to identify mast 

cell phenotype variability and mediator synthesis/release in situ.

• Special attention should be placed on the timing of measurement of mast cell 

mediators and patient symptoms as mast cells have been shown to be 

regulated by a circadian clock.

• There is no curative treatment for MCMDs at the present time. Prevention of 

stimulation of mast cells and reduction of the effects of their mediators are 

necessary. Step-wise increase in treatment is recommended as indicated and 

tolerated.

Development of effective mast cell inhibitors should be a top priority. Recent promising 

results from the use of tetramethoxyluteolin and IL-37 should be expanded in appropriate 

formulations.
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Figure 1. 
Diagrammatic representation of a proposed diagnostic rubric for mast cell mediator 

disorders with emphasis on clonal and non-clonal subtypes, and the presence or absence of 

elevated serum tryptase.
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Figure 2. 
Estimated occurrence and overlapping nature of mast cell mediator disorders with respect to 

clonal and non-clonal subtypes: (a) clinical signs and symptoms; (b) documentation of 

increased serum and/or 24 h urine mast cell mediators or their metabolites; and (c) reduction 

in symptoms following treatment with drugs that inhibit stimulation of mast cells or the 

action of their mediators.
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Table 1.

Common Symptoms in Patients With Mast Cell Mediator Disorders

• Cardiovascular: chest pain, hypotension, hypotensive syncope, tachycardia

• Dermatologic: angioedema, dermatographism, flushing, pruritus, urticaria pigmentosa

• Gastrointestinal: abdominal crumping/pain, bloating, diarrhea, esophagitis, nausea, vomiting

• Musculoskeletal: bone/muscle pain, degenerative disc disease, osteoporosis/osteopenia

• Naso-ocular: nasal congestion, pruritus, tearing

• Neurologic: headache, memory and concentration difficulties (brain fog), paresthesias, peripheral neuropathy

• Respiratory: hoarseness, sore throat, stridor, throat swelling, wheezing

• Systemic: anaphylaxis, fatigue
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Table 2.

Conditions Often Comorbid With Mast Cell Diseases

• Chronic inflammatory response syndrome (CIRS)

• Fibromyalgia syndrome (FMS)

• Ehlers-Danlos Syndrome (EDS)

• Gulf War Illness (GWI)

• Interstitial cystitis/bladder pain syndrome (IC/BPS)

• Irritable bowel syndrome (IBS)

• Kounis syndrome

• Multiple chemical sensitivity syndrome (MCSS)

• Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

• Post-Lyme syndrome

• Postural orthostatic tachycardia syndrome (POTS)

• Post-traumatic stress disorder (PTSD)
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Table 3.

Cell Triggers of Mast Cell Degranulation

Acetylcholine

Complement fragments

- C3α, C4α, C5α

Drugs

- Local anesthetics

- Lactam antibiotics

- Neuromuscular junction blockers

- Vancomycin

IgE

IgG1

IgG4

Lysophosphatidylserine

Peptides

 - Adrenomedullin

 - CGRP

 - Endorphin

 - Endothelin

 - Eosinophil granule proteins

 - Hemokinin-1

 - Leptin

 - Mastoparan

 - Neurotensin

 - NGF

 - PTH

 - Somatostatin

 - SP

 - Thrombin

 - VIP

Physical conditions

 - Cold

 - Heat

 - Pressure

 - Stress

 - Vibration
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Table 4.

Triggers of Mast Cells Without Degranulation

Triggers Mediator

 Peptides

 CRH VEGF

 SCF IL-6

Cytokines

 IL-1β IL-6

 IL-33 IL-31

 IL-33 CX CL8 (IL-8)

 IL-33 + SP TNF, VEGF

Heavy metals

 Aluminum

 Cadmium

 Mercury

Herbicides

 Atrazine

 Glyphosate

Pathogens

 Borrelia (Lyme disease)* TNF

 LPS TNF

 Poly (I:C) (viruses) IL-6, TNF

 Sporothrix (mold)* IL-6, TNF

*
Mycotoxins
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Table 5.

Mast Cell Mediators

Prestored

Biogenic Amines

 Dopamine

 Histamine

 5-Hydroxytryptamine (5-HT, serotonin)

Polyamines

 Spermidine, spermine

Cytokines

 TNF

Enzymes

 Arylsulfatases A

 Beta-hexosaminidase

 Beta-glucuronidase

 Beta-glucosaminidase

 Beta-D-galactosidase

 Carboxypeptidase A

 Cathepsins B,C, D, E, L

 Chymase

 Garnzyme B

 Kinogenases

 Phospholipases

 Renin

 Tryptase

  Metalloproteinases

 (CPA3, MMP9, ADAMTSS)

Growth factors

 FGF

 NGF

 SC

 TGFβ

 VEGF

Peptides

 ACTH

 Angiogenin

 Angiopoietin

 Calcitonin gene-related peptide

 Corticotropin-releasing hormone

 Endorphins

 Endothelin

 Hemokinin-1
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 Kinins (bradykinin)

 Leptin

 Melatonin

 Neurotensin

RANKL

 Somatostatin

 Substance P

 Urocortin

 Vasoactive intestinal peptide

Proteoglycans

 Chondroitin sulfate

 Heparan sulfate

 Heparin

 Hyaluronic acid

 Serglin

De novo synthesized

Chemokines

 IL-8 (CXCL8), MCP-1 (CCL2), MCP-3 (CCL7),

 MCP-4, RANTES (CCL5), Eotaxin (CCL11)

Cytokines

 IL-1β, IL-4, IL-5, IL-6, IL-15, IL-17, IL-31, IL-33, TNF

Growth Factors

 SCF, β-FGF, neurotrophin 3, NGF,

 PDGF, TGFβ, VEGF

Nitric oxide

Phospholipid metabolites

 Leukotriene B4

 Leukotriene C4

 Platelet activating factor

 Prostaglandin D2
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Table 6.

Classification of Mast Cell Disorders

Clonal Mast Cell Proliferation Disorders

1. Systemic mastocytosis (indolent, aggressive)

2. Cutaneous mastocytosis (urticarial pigmentosa, diffuse, telangiectasia macularis eruptive persistans)

3. Mast cell leukemia (MCL)

4. Mast cell sarcoma (MCS)

5. Extracutaneous mastocytoma (benign)

6. Monoclonal mast cell activation syndrome (MMAS)

Mast Cell Mediator Disorders (Idiopathic)

1. Monoclonal without abnormal clustering

2. Non-clonal

3. Idiopathic anaphylaxis (IA)

Reactive Mast Cell Proliferation/Mediator Release Disorders

1. IgE-mediated hypersensitivity reactions (e.g. food, insect anaphylaxis)

2. Drug-induced (e.g. vancomycin, opioids, taxanes, muscle relaxants, adenosine, nonsteroidal anti-inflammatory)

3. Mast cell hyperplasia (related with chronic infections, neoplasia, autoimmune conditions due to a possible excess of stem cell factor)
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Table 7.

Diagnostic Criteria for Systemic Mastocytosis

Major 
criterion

a. Multifocal, dense infiltrates of mast cells (≥15 mast cells in aggregates) detected in intramedullary biopsy sections and/or 
extramedullary organ(s).

Minor 
criteria

a. In intramedullary biopsy sections or other extramedullary ones >25% of the mast cells in the infiltrate are spindle shaped or 
have atypical morphology, or of all mast cells in bone marrow aspirate smears >25% are immature or atypical

b. Gain of function point mutation of KIT at codon 816 (usually KIT D816V) in bone marrow, blood, or other extracutaneous 
organ

c. Aberrant immunophenotype of mast cells of CD2 and/or CD25 in bone marrow, blood, or other extracutaneous organ (in 
addition to normal mast cell markers)

d. Persistently elevated baseline serum total tryptase (>20 ng/ml).
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Table 8.

Proposed Pathogenetic Mechanisms for Mast Cell Mediator Disorders

Lower activation threshold due to decreased expression/function of inhibitory molecules/pathways.

Intracellular

PTEN ↓

Chondroitin sulfate ↓

Sergylin ↓

Spermine/spermidine ↓

TGF beta ↓

Extracellular

Deflisinc ↓

IL-10 ↓

IL-37 ↓

IL-38 ↓

TGF beta ↓

Combination of non-allergic triggers

Peptides and Cytokines

SP + IL-33

NT + CRH

HK-1 + IL-33

Unappreciated triggers

CRH

Borrelia toxin

Bradykinin

CGRP

RCAP

Mycotoxins

NGF

Poly (lic)

PTH

Stress

Autocrine effects

Secretion of autocrine mediators

CRH

NK-1

Neurotensin

Tryptase

Autocrine receptor expression

Secretion of autocrine mediators

NT → CRHR-1 ↑

SP → CRHR-1 ↑

CRH → NTR ↑
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SP → STZ ↑

IL-33 → NK-1 ↑
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Table 9.

Treatment Approach for Mast Cell Mediator Disorders

1. Antihistamines (cetirizine, diphenhydramine, hydroxyzine)

2. Antihistamines with anti-eosinophilic action (ketotifen, rupatadine)

3. Antihistamine with antiserotonin action (cyproheptadine)

4. Tricyclic antidepressants with combined antihistamine action (doxepin)

5. Flavonoids (luteolin, quercetin of high purity and increased absorption)

6. Antileukotrienes (montelukast)

7. Cromolyn sodium

8. Steroids (methylprednisolone)

9. Epinephrine (EpiPen, AnaPen)

10. Anti-IgE (omalizumab)

11. TK inhibitor (imatinib)

12. Kinase inhibitors for mast cells expressing mutant KIT (mitostaurine, avapritinib)
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