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Abstract: Some sickle cell anemia (SCA) patients suffer significantly
worse phenotypes than others. Causes of such disparities are incompletely
understood. Comorbid chronic inflammation likely is a factor. Recently,
mast cell (MC) activation (creating an inflammatory state) was found to be
a significant factor in sickle pathobiology and pain in a murine SCA model.
Also, a new realm of relatively noncytoproliferative MC disease termed MC
activation syndrome (MCAS) has been identified recently. MCAS has not
previously been described in SCA. Some SCA patients experience pain
patterns and other morbidities more congruent with MCAS than traditional
SCA pathobiology (eg, vasoocclusion). Presented here are 32 poor-
phenotype SCA patients who met MCAS diagnostic criteria; all improved
with MCAS-targeted therapy. As hydroxyurea benefits some MCAS
patients (particularly SCA-like pain), its benefit in SCA may be partly
attributable to treatment of unrecognized MCAS. Further study will better
characterize MCAS in SCA and identify optimal therapy.
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T he contrast between the mutational homogeneity (in beta glo-
bin) and clinical heterogeneity in sickle cell anemia (SCA) has

long been recognized.1,2 Putative factors associated with higher
rates of painful vasoocclusive crises include higher hemoglobin
concentration, lower hemoglobin F (HbF) concentration, higher
hemolysis rate, higher blood viscosity and neutrophil activation,
among others. Putative factors associated with higher mortality risk
include vasoocclusive crises, acute chest syndrome, renal failure,
seizures, lower hemoglobin concentration, lower HbF concentra-
tion and leukocytosis.3 Nevertheless, there remains substantial var-
iability in crisis rates among SCA patients sharing similar levels of
these factors; some endure frequent crises, whereas others suffer
few crises—and some suffer none at all. Primary and emergency
care physicians and hematologists know well the “poor-
phenotype” minority of their SCA population who disproportion-
ately present with crises and other SCA complications. In 1 study,
the 5.2% of SCA patients who averaged 3 or more pain crises per
year accounted for 32.9% of the SCA pain crises treated by physi-
cians at hospitals.4

One group of factors proposed to account for the clinical
heterogeneity of SCA is genetic polymorphisms affecting not only
aspects of hemoglobin production other than hemoglobin S
production (eg, upregulation of HbF production, alpha thalassemia)
but also other systems impacted by erythrocyte sickling.2,5–7

Another factor that may affect SCA clinical heterogeneity is inflam-
mation, which might be consequential to the repeated vasoocclusive
crises of SCA and/or other specific inflammatory ailments.8

Inflammation is a complex milieu of humoral and cellular
factors. Although granulocytes and lymphocytes are often
considered among these cellular factors, the role of the mast cell
(MC) has been less commonly appreciated. Recently, MC
activation was identified as a key factor in the pathobiology and
pain of SCA in a murine model.9 On the clinical front, there also
has been recognition recently that the spectrum of primary MC
disease extends beyond the various forms (eg, cutaneous, sys-
temic) of the proliferative disease of mastocytosis to the relatively
nonproliferative MC activation syndrome (MCAS).10 The clonal
origins of mastocytosis and other myeloproliferative neoplasms
(MPNs) have been appreciated for some time; more recently, the
heterogeneity of these mutations across patients, and the complex-
ity of the mutation set in any given patient, are being increasingly
recognized.11–13 Similarly, there are preliminary data suggesting
substantial intra-individual mutational complexity and interindi-
vidual mutational heterogeneity in MCAS.14,15

Reported here for the first time is the presence of MCAS
in a cohort of poor-phenotype sickle cell disease (SCD) patients.

PATIENTS AND METHODS
In the course of their routine clinical care, after recognition

that some of their symptoms were more easily attributable to
MCAS, 38 patients followed by the author for poor-phenotype
SCA (mostly genotype SS; leading to at least 3 emergency
department presentations and/or hospitalizations for sickle cell
crises per year for the previous 5 years, and/or engaged in
a treatment program of chronic red cell transfusions or hydroxy-
urea [HU] to mitigate frequent crises) were diagnostically
evaluated for MCAS as described in recent reviews.10,16,17 In brief,
testing included serum tryptase and chromogranin A (CgA) levels,
plasma histamine and heparin and prostaglandin D2 (PGD2) levels,
and spot and 24-hour urinary PGD2 and N-methylhistamine
(NMH) levels. Patients were cautioned to avoid nonsteroidal
anti-inflammatory drugs (potentially reducing prostaglandin pro-
duction) and proton pump inhibitors (potentially escalating CgA
production) for at least 5 days before specimen acquisition, and all
samples were chilled on ice immediately on acquisition (the 24-
hour urine samples were kept continuously refrigerated throughout
collection) and kept chilled throughout handling and transport.

RESULTS
Thirty-two of the 38 evaluated poor-phenotype SCA

patients (84%) were found to meet the current proposed
diagnostic criteria for MCAS.10 This cohort of SCA/MCAS
patients is summarily described in Table 1 and in more
detail in Supplemental Digital Content 1 (see Table,
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http://links.lww.com/MAJ/A61). Three selected cases particu-
larly well illustrating the scenario of frequent crises and other
chronic complications initially attributed solely to SCA, with
significant improvement then seen upon recognition and treat-
ment of comorbid MCAS, are detailed in Supplemental Digital
Content 2 (see Table, http://links.lww.com/MAJ/A61).

Of note, the majority of the SCA/MCAS patients
manifested normal serum tryptase levels, normal plasma
histamine and urinary NMH levels, elevated PGD2 levels and
elevated heparin levels. PGD2 and heparin levels were the most
useful for defining the presence of MC activation; urinary NMH
levels were the least helpful. Tryptase is expected to be normal
to perhaps minimally elevated in MCAS, a point of distinction
between MCAS and mastocytosis that highlights the relatively
new understanding that tryptase levels correlate more with total
body MC load than total body MC activation state.16,18–22 Con-
sistent with the known effects of chronic kidney disease (CKD)
on serum levels of tryptase19,23–25 and CgA,26–31 mean tryptase
and CgA levels were higher in SCA/MCAS patients with CKD
than without CKD. However, although there was virtually no
overlap in the ranges of CgA between SCA/MCAS cohorts with
and without CKD, there was substantial overlap in the ranges of
tryptase between these cohorts. Plasma heparin testing yields
readings in terms of anti-Factor-Xa activity, and although such
testing is more commonly pursued to determine the efficacy of
low molecular weight heparin therapy, the same test as applied
in individuals not on heparin therapy reveals endogenous levels
of heparin, which seems to be a sensitive and specific indicator
of MC activation because it is known to be produced in humans
only by MCs32 and indeed was the first MC mediator to be
discovered nearly 80 years ago.33

Also, of note, all the SCA/MCAS patients evaluable for
symptomatic improvement from MCAS-targeted therapy expe-
rienced at least partial improvement, and nearly 1 in 5
experienced complete improvement, perhaps providing a basis
for encouragement for other poor-phenotype SCA patients (and
their physicians). Oddly, although hospital and/or emergency
department utilization declined dramatically for some (typically
more compliant) patients following institution of effective
MCAS therapy, mean annualized such usage across the
evaluable cohort did not seem to decrease. However, loss of
one third of the total cohort to follow-up may have skewed
these results.

DISCUSSION
The sources of heterogeneity of clinical phenotype

among SCA patients who all share the same point mutation
in beta globin have long been investigated and debated. As
noted above, a number of potential contributing factors have
been identified, and yet it has generally been appreciated that
a significant portion of the cause of poor-phenotype SCD
(especially variants expected to be less morbid than SCA)
remains poorly accounted. Inflammation has been proposed as
a significant contributor to the morbidity and heterogeneity of
such patients, but a common recurring cause of such inflam-
mation has not yet been identified.

Recently, Vincent et al9 found that in a murine model of
SCA, MC activation underlies sickle pathophysiology leading
to inflammation, vascular dysfunction, pain, and requirement
for high doses of morphine, raising the questions of whether
a similar process is present in sickle cell patients and whether
therapies targeted at MC mediator production or action might
help ameliorate some of the morbidities of SCD. The present
series provides preliminary data that MC activation indeed is

present in some poor-phenotype SCD patients, including not
only those with SCA but also those with other sickle cell var-
iants, and that therapy in such patients targeted at their MC
activation can change the acuity of at least some of their clinical
manifestations that traditionally have been attributed exclu-
sively to their SCD.

Of hematopoietic origin, MCs are found in all human
tissues, especially at the environmental interfaces and
perivascular/perineural sites.34 They serve largely as senti-
nels of environmental change and bodily insults and respond
by releasing variable assortments and levels of molecular
mediators that directly and indirectly influence behavior in
other (local and distant) cells and tissues to respond to
changes/insults so as to maintain, or restore, homeostasis.
The transmembrane tyrosine kinase receptor KIT is the dom-
inant MC regulatory element, shown to be critical for key
MC functions including survival, differentiation, chemo-
taxis, and activation.35

Traditionally, MC disease has been thought to be
principally a matter of neoplastic burdens of MCs (ie,
mastocytosis), with symptoms resulting principally from an
accompanying inappropriate release of mediators from these
excessive MCs. Nearly a quarter century ago, though, the
notion was first advanced that there might be forms of MC
disease manifesting inappropriate mediator release with little to
no accompanying MC cytoproliferation.36 This theory appeared
validated when the first recognized cases of what is now called
MCAS were published in 2007.14,37,38 MCAS typically
causes chronic multisystem polymorbidity of a generally
inflammatory theme.10 Different patterns of aberrant expres-
sion of the large MC mediator repertoire in different MCAS
patients make for markedly heterogeneous—and thus diag-
nostically challenging—presentations (see Table, Supple-
mental Digital Content 3, http://links.lww.com/MAJ/A61).
The cause of such heterogeneity of mediator expression in
MCAS is not yet clear. Provocatively, though, Molderings
et al14,15 have repeatedly found a broad array of (presumably
mostly constitutively activating) mutations scattered across
all domains of KIT in small cohorts of MCAS patients, with
most of their studied patients bearing multiple mutations in
no yet-apparent recurring patterns. (Interestingly, too, the
MC KITD816V mutation—seemingly a driver of MC cytopro-
liferation, high serum tryptase levels, and other distinguish-
ing features of mastocytosis39—seems rare in MCAS.)
Although the findings by Molderings et al have not yet been
independently confirmed, it is noteworthy that similar muta-
tional complexity (in KIT and other cellular controllers) has
been found, too, across the spectrum of chronic MPNs within
which the MC disorders reside,11 and in mastocytosis
itself.12,13

Given these new biological and clinical insights, pro-
posals have emerged to consider all MC diseases, including
mastocytosis and MCAS, under the umbrella term of MC
activation disease (MCAD).40 It also has been proposed that the
assorted systemic MCAD variants and clinical phenotypes rep-
resent not distinct disease entities but instead varying presenta-
tions of a common generic root process of MC dysfunction.41

Despite its rarity, mastocytosis is fairly readily recognizable
because of its distinctive clinicopathological presentation,
whereas MCAS, although suspected to be far more prevalent
in the whole41,42 than mastocytosis, is more challenging to rec-
ognize in large part because of the heterogeneity of its variant
presentations, some of which are already discretely recognized
(eg, idiopathic anaphylaxis,38 cryopyrin-associated periodic
syndrome43), but most not.
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TABLE 1. Summary characteristics of 32 poor-phenotype SCA (and variant) patients with comorbid MCAS

Age at time of MCAS diagnosis, yr
Range 20–63
Mean 35
Median 31

Gender, n (%)
Male 16 (50)
Female 16 (50)

SCD variant, n (%)
SS 25 (78)
SC 3 (9)
S-b0 thalassemia 3 (9)
S-b+ thalassemia 1 (3)

CKD at time of MCAS diagnosis, n (%)
None 23 (72)
Stage 1 0 (0)
Stage 2 0 (0)
Stage 3A 1 (3)
Stage 3B 1 (3)
Stage 4 0 (0)
Stage 5 7 (22)

MC mediators (normal range) at time of MCAS diagnosis Range Mean Median

Patients with
nonelevated
level, n (%)

Patients with
elevated

level, n (%)

Serum tryptase (0.4–10.9 ng/mL, N 5 32) 2.2–26.4 8.4 6.0 23 (72) 9 (28)
CKD present at time of MCAS diagnosis (n 5 9) 4.5–26.4 15.2 12.8 3 (33) 6 (67)
CKD absent at time of MCAS diagnosis (n 5 23) 2.2–12.7 5.4 4.6 22 (96) 1 (4)

Plasma histamine (0–6 nmol/L, n 5 23) 2–20 7.7 7 12 (52) 11 (48)
Plasma prostaglandin D2 (35–115 pg/mL, n 5 13) 64–342 144 132 5 (38) 8 (62)
Urinary prostaglandin D2 (100–280 pg/mL, n 5 31) 25–1287 382 304 14 (45) 17 (55)
24-hr collection (n 5 19) 25–1287 437 355 5 (26) 14 (74)
Random/spot collection (n 5 12) 63–810 294 227 8 (67) 4 (33)

Urinary N-methylhistamine (30–200 mg/g Cr, n 5 30) 29–274 106 90 28 (93) 2 (7)
24-hr collection (n 5 16) 29–274 111 95 14 (87) 2 (13)
Random/spot collection (n 5 14) 29–231 99 84 13 (93) 1 (7)

Plasma heparin (0.00–0.02 anti-Factor-Xa units/mL,18 n 5 5) 0.02–0.09 0.06 0.07 1 (20) 4 (80)
Serum chromogranin A (0–50 ng/mL, n 5 28) 17–3746 533 58 14 (50) 14 (50)
CKD present at time of MCAS diagnosis (n 5 9) 126–3746 1553 1792 0 (0) 9 (100)
CKD absent at time of MCAS diagnosis (n 5 19) 17–129 50 40 22 (79) 6 (21)

Therapeutic result (N 5 27, others LTFU), n (%)
Complete response 5 (19)
Partial response 22 (81)

5 yr before diagnosis
of MCAS

Since MCAS diagnosis
(mean 31 mo)

Hospital days (n 5 21, others LTFU)
Total 501 400
Annual mean 4.9 19.0

Emergency department visits (n 5 21, others LTFU)
Total 329 214
Annual mean 3.3 10.2

SCA, sickle cell anemia; MCAS, MC activation syndrome; SCD, sickle cell disease; CKD, chronic kidney disease; MC, mast cell; LTFU, lost to
follow-up.
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Such clinical heterogeneity of MCAD, including MCAS,
and the similarity of the pain syndromes in SCA and MCAD
may challenge health care providers to recognize MCAD in
sickle cell patients from symptoms alone. As MC mediator
testing is ordered only after clinical suspicion of MCAD is
established, markers of MCAD in routinely obtained laboratory
testing would be useful. It is interesting that in the present
series, as has been reported for the MCAS patient population in
general,44 not only was mild relative monocytosis frequently
found (long described as a component of the inflammation seen
in many sickle cell patients), but there also was frequent finding
of mild relative eosinophilia and basophilia, abnormalities per-
haps more suggestive of inflammation driven by MC activation
than by neutrophil or monocyte/macrophage activation from
vasoocclusion-driven inflammation. Modest elevations in the
prothrombin time and activated partial thromboplastin time
were also frequently seen in the present series.

The present case series suggests for the first time the
presence of MCAS as a factor in the morbidity of poor-
phenotype SCA. As hypothesized by Vincent et al9 and
others,45,46 several patients in the present series seem to have
been significantly helped by therapy targeted at MC mediator
production or action. Although it is interesting that current
high-end estimates of the portion of the general population
harboring MCAS (14%–17%)41,42 roughly correspond to the
portion of the SCA population suffering a poor phenotype of
SCA, specific prospective studies will be needed to confirm the
portion of the SCA population truly harboring MCAS.

Many MCAD patients suffer migratory soft tissue and/or
bone pain, which frequently responds poorly to typical (narcotic
and non-narcotic) analgesics and atypical analgesics such as
antidepressants and anticonvulsants. HU has long been recog-
nized to effectively modulate the illness of SCA,47 including
reducing pain crises, but its known mechanisms of action have
not yet satisfactorily accounted in full for its observed effects in
SCA.48 HU also has been used for decades to help occasional
mastocytosis patients, provocatively sometimes reducing symp-
toms without clearly reducing tumor burden, and recently its
utility in MCAS was also reported.49 Thus, it is possible that
another mechanism by which HU helps in SCA is to ameliorate
comorbid MCAS.

Noncompliance seems to have limited the benefit many
of the patients in the present series might have achieved from
MCAS-directed therapy. Noncompliance is common in chronic
illness and seems to be caused by many factors including the
degree of chronicity of the illness. That SCA patients often are
chronically ill since infancy poses a significant challenge to
educating those with comorbid MCAS of the value of
compliance with MCAS-directed therapy. Earlier diagnosis
and effective therapy of comorbid MCAS in SCA may be
a route toward reducing health care resource utilization and
noncompliance.

As noted above, MCAD’s heterogeneity and other issues
pose diagnostic challenges (discussed in detail in recent re-
views16,17), and with no predictors of therapeutic response yet iden-
tified, this heterogeneity poses therapeutic challenges, too.
Nevertheless, with a wide range of therapies (see Table,
Supplemental Digital Content 4, http://links.lww.com/MAJ/A61)
having shown benefit in assorted MCAD patients, it seems
likely that a patient, persistent and methodical approach to
a series of medication trials would yield benefit in some
poor-phenotype SCA patients also found to harbor MCAS.
If MCAS is confirmed to largely be a clonal illness, it may
be possible before long—much as is developing in many other
disease areas—to follow diagnosis of MCAS (whether in SCA

or other settings) by determination, through whole exome or
genome sequencing of isolated peripheral blood MCs, of the
patient’s particular MC mutational pattern(s), which then
might yield therapeutic insights leading to more efficient
determination of effective therapy than afforded by the present
trial-and-error approach.

CONCLUSIONS
Poor-phenotype SCD patients should be evaluated for

possible comorbid MCAS. If found, MCAS should be treated,
although biologically informed approaches to such treatment
are limited at present and thus the path to effective individu-
alized therapy can be challenging. Further study is needed to
better characterize the prevalence and nature of MCAS in SCD
and to define efficient approaches to identifying effective
therapy.
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